Zobrazeno 1 - 10
of 11 366
pro vyhledávání: '"Principal eigenvalue"'
In this work, we consider a general time-periodic linear transport equation with integral source term. We prove the existence of a Floquet principal eigenvalue, namely a real number such that the equation rescaled by this number admits nonnegative pe
Externí odkaz:
http://arxiv.org/abs/2409.01868
Autor:
Anedda, Claudia, Cuccu, Fabrizio
Let $\Omega\subset\mathbb{R}^N$, $N\geq 1$, be a bounded connected open set. We consider the weighted eigenvalue problem $-\Delta u =\lambda m u$ in $\Omega$ with $\lambda \in \mathbb{R}$, $m\in L^\infty(\Omega)$ and with homogeneous Dirichlet and Ro
Externí odkaz:
http://arxiv.org/abs/2408.04634
In this paper we consider a dynamic version of the Erd\H{o}s-R\'{e}nyi random graph, in which edges independently appear and disappear in time, with the on- and off times being exponentially distributed. The focus lies on the evolution of the princip
Externí odkaz:
http://arxiv.org/abs/2407.02686
We study the eigenvalue problem involving the mixed local-nonlocal operator $ L:= -\Delta +(-\Delta)^{s}+q\cdot\nabla$~ in a bounded domain $\Omega\subset\R^N,$ where a Dirichlet condition is posed on $\R^N\setminus\Omega.$ The field $q$ stands for a
Externí odkaz:
http://arxiv.org/abs/2406.19577
The paper is concerned with the principal eigenvalue of some linear elliptic operators with drift in two dimensional space. We provide a refined description of the asymptotic behavior for the principal eigenvalue as the drift rate approaches infinity
Externí odkaz:
http://arxiv.org/abs/2405.09031
Autor:
Kim, Daesung, Park, Hyunchul
We investigate the explicit expression for the principal eigenvalue $\lambda_{1}^{X}(D)$ for a large class of compound Poisson processes $X$ on a bounded open set $D$ by examining its spectral heat content. When the jump density of the compound Poiss
Externí odkaz:
http://arxiv.org/abs/2405.20571
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Boutillon, Nathanaël
We consider an elliptic operator in which the second-order term is very small in one direction. In this regime, we study the behaviour of the principal eigenfunction and of the principal eigenvalue. Our first result deals with the limit of the princi
Externí odkaz:
http://arxiv.org/abs/2311.12232
There are numerous studies focusing on the convergence of the principal eigenvalue $\lambda(s)$ as $s\to+\infty$ corresponding to the elliptic eigenvalue problem \begin{align*} -\Delta\varphi(x)-2s\mathbf{v}\cdot\nabla\varphi(x)+c(x)\varphi(x)=\lambd
Externí odkaz:
http://arxiv.org/abs/2311.06475