Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Primary 34L05, Secondary 47B35"'
Autor:
Bessonov, R. V.
Let $\mu$ be an even measure on the real line $\mathbb{R}$ such that $$c_1 \int_{\mathbb{R}}|f|^2\,dx \le \int_{\mathbb{R}}|f|^2\,d\mu \le c_2\int_{\mathbb{R}}|f|^2\,dx$$ for all functions $f$ in the Paley-Wiener space $\mathrm{PW}_{a}$. We prove tha
Externí odkaz:
http://arxiv.org/abs/1603.07533
Autor:
Bessonov, R. V., Romanov, R. V.
Let $\mu$ be a measure on the real line $\mathbb{R}$ such that $\int_{\mathbb{R}}\frac{d\mu(t)}{1+t^2} < \infty$ and let $a>0$. Assume that the norms $\|f\|_{L^2(\mathbb{R})}$ and $\|f\|_{L^2(\mu)}$ are comparable for functions $f$ in the Paley-Wiene
Externí odkaz:
http://arxiv.org/abs/1509.08117
Autor:
R. V. Bessonov
Let $��$ be an even measure on the real line $\mathbb{R}$ such that $$c_1 \int_{\mathbb{R}}|f|^2\,dx \le \int_{\mathbb{R}}|f|^2\,d��\le c_2\int_{\mathbb{R}}|f|^2\,dx$$ for all functions $f$ in the Paley-Wiener space $\mathrm{PW}_{a}$. We prov
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5e14dc8c4e73537a4b961c7149990180
Autor:
Roman Romanov, R. V. Bessonov
Publikováno v:
Inverse Problems. 32:115007
Let $��$ be a measure on the real line $\mathbb{R}$ such that $\int_{\mathbb{R}}\frac{d��(t)}{1+t^2} < \infty$ and let $a>0$. Assume that the norms $\|f\|_{L^2(\mathbb{R})}$ and $\|f\|_{L^2(��)}$ are comparable for functions $f$ in the Pa