Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Primary 22E46, Secondary 43A85"'
For every simple Hermitian Lie group $G$, we consider a certain maximal parabolic subgroup whose unipotent radical $N$ is either abelian (if $G$ is of tube type) or two-step nilpotent (if $G$ is of non-tube type). By the generalized Whittaker Planche
Externí odkaz:
http://arxiv.org/abs/2401.06427
Publikováno v:
J. Lie Theory 33 (2023), no. 1, 253-270
We study degenerate Whittaker vectors in scalar type holomorphic discrete series representations of tube type Hermitian Lie groups and their analytic continuation. In four different realizations, the bounded domain picture, the tube domain picture, t
Externí odkaz:
http://arxiv.org/abs/2207.05967
Publikováno v:
J. Funct. Anal. 286 (2024), no. 6, Paper No. 110333, 41 pp
For a Hermitian Lie group $G$ of tube type we find the contribution of the holomorphic discrete series to the Plancherel decomposition of the Whittaker space $L^2(G/N,\psi)$, where $N$ is the unipotent radical of the Siegel parabolic subgroup and $\p
Externí odkaz:
http://arxiv.org/abs/2203.14784
Autor:
Benoist, Yves, Kobayashi, Toshiyuki
Let $G$ be a semisimple real Lie group with finite center and $H$ a connected closed subgroup. We establish a geometric criterion which detects whether the representation of $G$ in $L^2(G/H)$ is tempered.
Comment: 34 pages. To be published in: D
Comment: 34 pages. To be published in: D
Externí odkaz:
http://arxiv.org/abs/1706.10131
Autor:
Benoist, Yves, Kobayashi, Toshiyuki
Publikováno v:
J. Eur. Math. Soc. (JEMS) 17 (2015), pp. 3015-3036
Let G be a semisimple algebraic Lie group and H a reductive subgroup. We find geometrically the best even integer p for which the representation of G in L^2(G/H) is almost L^{p}. As an application, we give a criterion which detects whether this repre
Externí odkaz:
http://arxiv.org/abs/1211.1203