Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Primary 11M06, Secondary 11M26"'
Autor:
Garg, Meghali, Maji, Bibekananda
In 1916, Riesz gave an equivalent criterion for the Riemann hypothesis (RH). Inspired from Riesz's criterion, Hardy and Littlewood showed that RH is equivalent to the following bound: \begin{align*} P_1(x):= \sum_{n=1}^\infty \frac{\mu(n)}{n} \exp\le
Externí odkaz:
http://arxiv.org/abs/2409.17708
In 1970, Huxley obtained a sharp upper bound for the sixth moment of Dirichlet $L$-functions at the central point, averaged over primitive characters $\chi$ modulo $q$ and all moduli $q \leq Q$. In 2007, as an application of their ``asymptotic large
Externí odkaz:
http://arxiv.org/abs/2409.01457
Autor:
Gupta, Shivajee, Vatwani, Akshaa
We formulate a generalization of Riesz-type criteria in the setting of $L$-functions belonging to the Selberg class. We obtain a criterion which is sufficient for the Grand Riemann Hypothesis (GRH) for $L$-functions satisfying axioms of the Selberg c
Externí odkaz:
http://arxiv.org/abs/2211.02954
Autor:
Bettin, Sandro, Fazzari, Alessandro
We compute the one-level density of the non-trivial zeros of the Riemann zeta-function weighted by $|\zeta(\frac12+it)|^{2k}$ for $k=1$ and, for test functions with Fourier support in $(-\frac12,\frac12)$, for $k=2$. As a consequence, for $k=1,2$, we
Externí odkaz:
http://arxiv.org/abs/2208.08421
Publikováno v:
Proc. Amer. Math. Soc., 2022
In 1916, Riesz proved that the Riemann hypothesis is equivalent to the bound $\sum_{n=1}^\infty \frac{\mu(n)}{n^2} \exp\left( - \frac{x}{n^2} \right) = O_{\epsilon} \left( x^{-\frac{3}{4} + \epsilon} \right)$, as $x \rightarrow\infty$, for any $\epsi
Externí odkaz:
http://arxiv.org/abs/2202.00637
In 1916, Riesz proved that the Riemann hypothesis is equivalent to the bound $\sum_{n=1}^\infty \frac{\mu(n)}{n^2} \exp\left( - \frac{x}{n^2} \right) = O_{\epsilon} \left( x^{-\frac{3}{4} + \epsilon} \right)$, as $x \rightarrow\infty$, for any $\epsi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7ea2ee6049089961af3780d15d5fdc0d
Autor:
Keiju SONO1 souno@math.kobe-u.ac.jp
Publikováno v:
Turkish Journal of Mathematics. 2021, Vol. 45 Issue 5, p2050-2072. 23p.
Autor:
Garg, Meghali, Maji, Bibekananda
Publikováno v:
Monatshefte für Mathematik; Jul2023, Vol. 201 Issue 3, p771-788, 18p
Autor:
Garunkštis, Ramūnas, Kalpokas, Justas
Publikováno v:
From Arithmetic to Zeta-Functions; 2016, p141-153, 13p
Autor:
KANEKO, IKUYA
Publikováno v:
Bulletin of the Australian Mathematical Society; Aug2022, Vol. 106 Issue 1, p48-56, 9p