Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Primary:14N05, Secondary:13D02"'
Autor:
Ahn, Jeaman, Han, Kangjin
In this paper we study graded Betti numbers of any nondegenerate 3-regular algebraic set $X$ in a projective space $\mathbb P^{n}$. More concretely, via Generic initial ideals (Gins) method we mainly consider `tailing' Betti numbers, whose homologica
Externí odkaz:
http://arxiv.org/abs/1404.1757
On Syzygies, degree, and geometric properties of projective schemes with property $\textbf{N}_{3,p}$
Autor:
Ahn, Jeaman, Kwak, Sijong
For an algebraic set $X$ (union of varieties) embedded in projective space, we say that $X$ satisfies property $\textbf{N}_{d,p}$, $(d\ge 2)$ if the $i$-th syzygies of the homogeneous coordinate ring are generated by elements of degree $< d+i$ for $0
Externí odkaz:
http://arxiv.org/abs/1402.3100
Autor:
Kangjin Han, Jeaman Ahn
Publikováno v:
Journal of Algebra. 440:642-667
In this paper we study graded Betti numbers of any nondegenerate 3-regular algebraic set $X$ in a projective space $\mathbb P^{n}$. More concretely, via Generic initial ideals (Gins) method we mainly consider `tailing' Betti numbers, whose homologica