Zobrazeno 1 - 10
of 82
pro vyhledávání: '"Prikarpatskii, A."'
Publikováno v:
Teoreticheskaya i Matematicheskaya Fizika. 160:249-269
Autor:
A. M. Samoilenko, Ya A. Prikarpatskii
Publikováno v:
Ukrainian Mathematical Journal. 51:1713-1728
Autor:
Ya. A. Prikarpatskii, A. M. Samoilenko
Publikováno v:
Ukrainian Mathematical Journal. 51:1556-1568
By using the Cartan differential-geometric theory of integral submanifolds (invariant tori) of completely Liouville-Arnol’d integrable Hamiltonian systems on the cotangent phase space, we consider an algebraic-analytic method for the investigation
Publikováno v:
Ukrainian Mathematical Journal. 45:1878-1892
On the basis of the geometric ideas of Poincare and Mel'nikov, we study sufficient criteria of the transversal splitting of heteroclinic separatrix manifolds of slowly perturbed nonlinear dynamical systems with a small parameter. An example of adiaba
Publikováno v:
Journal of Soviet Mathematics. 67:2993-2998
We develop a symplectic method of finding the adiabatic invariants of nonlinear dynamic systems with small parameter. We show that a necessary and sufficient condition for the existence of quasi-Hamiltonian adiabatic invariants of nonlinear dynamic s
Autor:
A. K. Prikarpatskii, Yu. N. Sidorenko
Publikováno v:
Journal of Soviet Mathematics. 65:1921-1927
On the basis of the gradient method of N. N. Bogolyubov, Jr. and the method of finite-zoned integration of S. P. Novikov the authors give a large class of quasiperiodic exact solutions of the Ablowitz dynamical system with the help of the Riemann the
Autor:
A. A. Evtushenko, A. K. Prikarpatskii
Publikováno v:
Ukrainian Mathematical Journal. 44:1487-1490
Use of a parametric intego-interpolational method is proposed for the study of singular integral equations with a singular kernel of Cauchy type; the method involves replacing the regular part of a quadratic formula with subsequent inversion of a sin
Autor:
A. K. Prikarpatskii, V. S. Kuibida
Publikováno v:
Ukrainian Mathematical Journal. 44:318-330
A new analytic approach to the description of the class of parametrically Lax-integrable nonlinear nonhomogeneous dynamical systems defined on functional manifolds that generalizes the well-known Mitropol'skii asymptotic method [1] is developed. Unde
Publikováno v:
Ukrainian Mathematical Journal. 43:63-74
Some aspects are considered of a gradient holonomic algorithm in the theory of integrability of nonlinear dynamic systems. The gradient holonomic method yields recursion operators that explicitly contain a space variable and a time variable. An algor
Autor:
A. K. Prikarpatskii, N. N. Bogolyubov
Publikováno v:
Ukrainian Mathematical Journal. 42:702-707
Isospectral problems for operator-valued Sturm-Liouville and Dirac differential expressions are considered. Within the framework of the gradient method, one establishes the complete integrability of the Lax associated nonlinear Hamiltonian systems wi