Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Prem N. Bajaj"'
Autor:
Prem N. Bajaj, G. R. Mendieta
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 16, Iss 3, Pp 621-623 (1993)
We discuss some particular cases of the following problem. Each of m persons tosses a coin. Those who get heads stay for the next round. Those who get tails are eliminated; however, if all persons get tails in a round, they move to the next round (as
Externí odkaz:
https://doaj.org/article/b1ad56128c544f108a16c625d864108f
Publikováno v:
Mathematics Magazine. 63:361-363
Autor:
Prem N. Bajaj
Publikováno v:
Humanistic Mathematics Network Journal. 1:45-45
Autor:
Prem N. Bajaj
Publikováno v:
SIAM Journal on Applied Mathematics. 18:282-286
Autor:
Prem N. Bajaj
Publisher Summary This chapter presents some constructions in semidynamical systems (SDSs). The SDSs are continuous flows defined for all future time. Functional differential equations provide natural examples of these. SDSs provide some interesting
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c25ea66de1b2c484913af359ad28927d
https://doi.org/10.1016/b978-0-12-434170-8.50014-5
https://doi.org/10.1016/b978-0-12-434170-8.50014-5
Autor:
Prem N. Bajaj
Publisher Summary This chapter discusses the stability of noncompact sets in semidynamical systems (SDSs.). These systems are continuous flows defined for all future time (non-negative t). The chapter presents the natural examples of SDSs by function
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f0f06c990b5736b41dfabb50ae21a8bf
https://doi.org/10.1016/b978-0-12-059650-8.50061-2
https://doi.org/10.1016/b978-0-12-059650-8.50061-2
Autor:
Prem N. Bajaj
Filters have been used by J. Auslander in order to have a unified approach for ɛ-δ and nbd definitions for Lyapunov stability. The purpose of this note is to generalize his results to rim-compact topological spaces.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f73d0e8831d1173455e5e5e002f7cebe
https://doi.org/10.1016/s0304-0208(08)72686-0
https://doi.org/10.1016/s0304-0208(08)72686-0
Autor:
Prem N. Bajaj
Publisher Summary Semi-flows or semi-dynamical systems (SDS) are defined only for future time. Natural examples of SDS are provided by functional differential equations for which existence and uniqueness conditions hold. The SDS theory not only gener
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b65e5158012dd57505e57fc54689b4e4
https://doi.org/10.1016/b978-0-12-045550-8.50013-x
https://doi.org/10.1016/b978-0-12-045550-8.50013-x
Autor:
Prem N. Bajaj
Publisher Summary This chapter describes the prolongations in semidynamical systems. Semidynamical systems (sds) are continuous flows defined for all future time. Natural examples of sds are furnished by functional differential equations for which ex
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::90468cc107b2daec36bf4b0328719088
https://doi.org/10.1016/b978-0-12-164902-9.50042-3
https://doi.org/10.1016/b978-0-12-164902-9.50042-3
Autor:
Prem N. Bajaj
Publikováno v:
Lecture Notes in Mathematics ISBN: 9783540061878
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4aab5a5793d75b785b9d8b772fbd9d3d
https://doi.org/10.1007/bfb0061720
https://doi.org/10.1007/bfb0061720