Zobrazeno 1 - 10
of 46
pro vyhledávání: '"Prasoon Tiwari"'
Global Positioning System (GPS) is a global navigational satellite system developed by the United States Department of Defense. This technology is available only with America, Russia (GLONASS), China (BeiDou), and Japan (Quasi-Zenith Satellite System
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::51875c54c603a9273688bcf5a016724b
https://doi.org/10.1016/b978-0-12-818617-6.00018-4
https://doi.org/10.1016/b978-0-12-818617-6.00018-4
Autor:
Christos Chalkias, Prem Chandra Pandey, Alison de Oliveira Moraes, Aspasia Efthimiadou, Antigoni Faka, Victor Hugo Fernandes Breder, V.G. Ferreira, João Francisco Galera Monico, Grigoris Grigorakakis, Moisés José dos Santos Freitas, Kleomenis Kalogeropoulos, Nikolaos Katsenios, Eleni Kokinou, Amit Kumar, Pavan Kumar, Sanjay Kumar, Shubham Kumar, Preet Lal, Lawrence Lau, Łukasz Lemieszewski, Kamil Maciuk, R.K. Mall, Jorge Martínez-Guanter, Yenca O. Migoya-Orué, H.D. Montecino, Adam Narbudowicz, C.E. Ndehedehe, Evgeny Ochin, Manish Kumar Pandey, Zoi Papadopoulou, Alastair Pearson, Manuel Perez-Ruiz, George P. Petropoulos, Sandro M. Radicella, S.S. Rao, Eurico Rodrigues de Paula, Purabi Saikia, Lucas Alves Salles, Martin Schaefer, Hao Sha, Jyoti Kumar Sharma, A.K. Singh, R.P. Singh, Arpine Soghoyan, Panagiotis Sparangis, Prashant K. Srivastava, Nikolaos Stathopoulos, Baohua Sun, Prasoon Tiwari, Dimitris Triantakonstantis, Amit Kumar Tripathi, Andreas Tsatsaris, Konstantinos Tserpes, Shrini K. Upadhyaya, Bruno César Vani, Michalis Vidalis-Kelagiannis, T. Xu, Lin Yang, P. Yuan
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0f8d1877e1bf92841a86ffd0ee64fd0b
https://doi.org/10.1016/b978-0-12-818617-6.01002-7
https://doi.org/10.1016/b978-0-12-818617-6.01002-7
Autor:
Dleen Al-Sharafany, Akash Anand, Binoy Kumar Barman, Gautam Raj Bawri, Mukunda Dev Behera, Shaily Bhardwaj, Ram Bharose, Toby N. Carlson, Shivani Chaudhary, Sumit Kumar Chaudhary, Pulakesh Das, Vikas Dugesar, Daniela Silva Fuzzo, N.K. Garg, Sandeep Kumar Gautam, Ayushi Gupta, Dileep Kumar Gupta, Manika Gupta, Dionissios T. Hristopulos, Pavan Kumar, R.K. Mall, Arundhati Misra, M. Mruthyunjaya, Semonti Mukherjee, Jasna Nemčić-Jurec, Matthew R. North, Dharmendra Kumar Pandey, Varsha Pandey, Dhruvesh Patel, Andrew Pavlides, George P. Petropoulos, Rajendra Prasad, Vishal Prasad, Deepak Putrevu, K. Srinivasa Rao, Kishan S. Rawat, Ajay Shankar, Jyoti Sharma, Nitin Kumar Sharma, Garima Shukla, Anjali Singh, Dharmveer Singh, Prachi Singh, R.K. Singh, Ram Kumar Singh, Sudhir Kumar Singh, Ujjwal Singh, Prashant K. Srivastava, Swati Suman, Ionuţ Şandric, Prasoon Tiwari, Jayant K. Tripathi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::28318704a930862d3c88a17a6e4c5270
https://doi.org/10.1016/b978-0-12-812362-1.01002-x
https://doi.org/10.1016/b978-0-12-812362-1.01002-x
Autor:
Prasoon Tiwari, Bernard Jacques Lecours, Rajesh Tyagi, Jason Wayne Black, Weiwei Chen, Jamison Shaver
Publikováno v:
Interfaces. 47:292-304
Electric utilities have historically treated power demand as an uncontrollable input, requiring generation and transmission resources to maintain the supply-demand balance. In recent years, demand response (DR) has emerged as a means to manage custom
Publikováno v:
Computational Complexity. 6:312-340
View ann-vertex,m-edge undirected graph as an electrical network with unit resistors as edges. We extend known relations between random walks and electrical networks by showing that resistance in this network is intimately connected with thelengths o
Autor:
Prasoon Tiwari, Martin Tompa
Publikováno v:
Information Processing Letters. 49:243-248
We present direct proofs of the following results of Shamir and Snir [Mathematical System Theory 13 (1980) 301-322] on the depth of monotone arithmetic circuits over rings of characteristic 0: (1) an ω((log p)(log n)) lower bound for computing the p
Publikováno v:
Information Processing Letters. 42:55-60
Given a sequence of n points that form the vertices of a simple polygon, we show that determining a closest pair requires Ω(n log n) time in the algebraic decision tree model. Together with the well-known O(n log n) upper bound for finding a closest
Publikováno v:
SIAM Journal on Computing. 20:315-327
A general lower bound technique is developed for computation trees with operations $\{ + , - , * ,/,\lfloor \cdot \rfloor , < \} $ and constants $\{ 0,1\} $, for functions that have as their input a single n-bit integer. The technique applies to many
Publikováno v:
Journal of the ACM. 38:453-471
It is proved that no finite computation tree with operations { +, -, *, /, mod, < } can decide whether the greatest common divisor (gcd) of a and b is one, for all pairs of integers a and b . This settles a problem posed by Gro¨tschel et al. Moreove
Autor:
Allan Borodin, Prasoon Tiwari
Publikováno v:
Computational Complexity. 1:67-90
We consider the problem of determining whether or not there exists a sparse univariate polynomial that interpolates a given setS={(x i ,y i )} of points. Several important cases are resolved, e.g., the case when thex i's are all positive rational num