Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Pramit Pandit"'
Publikováno v:
Journal of Natural Fibers, Vol 21, Iss 1 (2024)
Subtropical fiber flax faces significant challenges due to crop lodging, exacerbated by the high N regimes needed for increased fiber production. This study examines impact of balanced P and K applications under varied N regimes on lodging resistance
Externí odkaz:
https://doaj.org/article/c678cef54abc4041a819fc05858240f2
Autor:
Pramit Pandit, Atish Sagar, Bikramjeet Ghose, Prithwiraj Dey, Moumita Paul, Saeed Alqadhi, Javed Mallick, Hussein Almohamad, Hazem Ghassan Abdo
Publikováno v:
Scientific Reports, Vol 13, Iss 1, Pp 1-15 (2023)
Abstract Accurate and in-time prediction of crop yield plays a crucial role in the planning, management, and decision-making processes within the agricultural sector. In this investigation, utilizing area under irrigation (%) as an exogenous variable
Externí odkaz:
https://doaj.org/article/b5c74085244e4026b268b3e16a999b6a
Publikováno v:
Journal of Agrometeorology, Vol 24, Iss 1 (2022)
In spite of the immense popularity and sheer power of the neural network models, their application in sericulture is still very much limited. With this backdrop, this study evaluates the suitability of neural network models in comparison with the lin
Externí odkaz:
https://doaj.org/article/9d5f47397e3d4cf69788ec16387b5efe
Autor:
Bellamkonda Jyostna, Pramit Pandit, Seetalam Malathi, Meena Admala, Yerram Sridhar, Supriya Kallakuri, Santosha Rathod, Bojjareddy Nanda Kumar Reddy
Publikováno v:
International Journal of Environment and Climate Change. :3623-3632
Aim: This study was conducted to model the relationship between discrete dependent variable (yellow stem borer population) and continuous weather variables. Data Description: The yellow stem borer (YSB) population and standard meteorological week (SM
Publikováno v:
Current Journal of Applied Science and Technology. :49-57
In spite of the immense success of different linear and non-linear time series models in their respective domains, real-world data are rarely pure linear or non-linear in nature. Hence, a hybrid modelling framework with the capability of handling bot
Publikováno v:
Asian Journal of Dairy and Food Research.
Background: Dairying in India has witnessed a radical transformation from a largely unorganised activity into a thriving organised industry. However, there are only a limited number of earlier attempts that specifically evaluated the milk production
Autor:
Abhijnan Das, Lakshmi Narsimhaiah, Pradeep Mishra, Herojit Singh, Kanchan Sinha, Soumik Dey, Pramit Pandit, P. K. Sahu
Publikováno v:
Annals of Data Science. 10:129-152
Education is a Nation’s strength. Association analysis of academic performance and its influential factors has remained research interest for all education researchers all over the world. India being an agriculture dominated country, for its develo
Publikováno v:
Computational Intelligence and Data Sciences ISBN: 9781003224068
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::bea852571516d812258c8a17f7b7a7c4
https://doi.org/10.1201/9781003224068-7
https://doi.org/10.1201/9781003224068-7
Autor:
Biswaranjan Acharya, Charles Oluwaseun Adetunji, Osikemekha Anthony Anani, Tadesse Hailu Ayane, Bishvajit Bakshi, Prasanta Kumar Barik, Ricardo A. Barrera-Cámara, Sitanath Biswas, Suparna Biswas, Israel Campero-Jurado, Monojit Chakraborty, Sumanta Chakraborty, Pushpa Choudhary, Chandreyee Chowdhury, Nivedita Das, Satya Ranjan Dash, Sujata Dash, Bhupesh Deka, Ocotlán Díaz-Parra, Moxa Doshi, Alejandro Fuentes-Penna, Kyvalya Garikapati, Demissie Jobir Gelmecha, Sourav K. Giri, Nikita Goel, Abhishek Gupta, Shavika Gupta, Yasha Hasija, Daniel Ingo Hefft, José Alberto Hernández-Aguilar, Arush Jain, Shweta Katkar, Sugamya Katta, Sumit Kaur, Farjad Khan, K.N. Krishnamurthy, Yogesh Kumar, Ujjwal Maulik, Josue Roman Mireles, Josue Roman Mireles (Martinez), Krishna Kumar Mishra, Arup Kumar Mukherjee, Reshmi S. Nair, Samaleswari Prasad Nayak, W. Nwankwo, Alberto Ochoa-Zezzatti, Akinola Samson Olayinka, Olaniyan T. Olugbemi, Manjusha Pandey, P.K. Pandey, Preeti Pandey, Pramit Pandit, Jyotiprakash Panigrahi, Priyanka Pattnaik, S. Premkumar, Satyananda Champati Rai, Sangita Ramatenki, Julio C. Ramos-Fernández, Siddharth Swarup Rautaray, Jazmin Rodriguez-Flores, Kailash Rout, Chandrima Roy, Priya Roy, Reek Roy, Miguel A. Ruiz-Jaimes, Jorge A. Ruiz-Vanoye, Himadri Nath Saha, Biswajit Sahoo, Sohail Saif, Sarita Samal, Harika Sammeta, Chiranmay Sarkar, Vinod Kumar Shukla, A.N. Sigappi, Arun Kumar Singh, Jitendra Singh, K. Rupabanta Singh, Ram Sewak Singh, Devendra Kumar Sinha, Yadira Toledo-Navarro, Francisco R. Trejo-Macotela, Ashish Tripathi, Kingsley Eghonghon Ukhurebor, C. Umezuruike, Madhavi Vaidya, Akson Varghese, Prem Chand Vashist, Nwankwo Wilson, Anuradha Yarlagadda
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f748ce3ef0e63fd45a60e735ce0e22e5
https://doi.org/10.1016/b978-0-12-823694-9.09992-8
https://doi.org/10.1016/b978-0-12-823694-9.09992-8
Publikováno v:
Assessing COVID-19 and Other Pandemics and Epidemics using Computational Modelling and Data Analysis ISBN: 9783030797522
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::616490f986015f1667dd884a7a2c88d0
https://doi.org/10.1007/978-3-030-79753-9_1
https://doi.org/10.1007/978-3-030-79753-9_1