Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Prakash H. Unki"'
Autor:
Prabhu Bevinamarad, Prakash H. Unki
Publikováno v:
Advances in Intelligent Systems and Computing ISBN: 9789811904745
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8762a261d75d677c7086d58c9e03d344
https://doi.org/10.1007/978-981-19-0475-2_19
https://doi.org/10.1007/978-981-19-0475-2_19
Autor:
Prakash H. Unki
Publikováno v:
2020 IEEE Bangalore Humanitarian Technology Conference (B-HTC).
A methodology is developed for classification of brain MRI images as normal and affected by multiple sclerosis (MS). The classification of brain MR images into normal and MS using Back propagation neural network (BPNN) has given maximum accuracy of 9
Publikováno v:
International Journal of Computer Sciences and Engineering. 6:667-670
Publikováno v:
Intelligent Data Communication Technologies and Internet of Things ISBN: 9783030340797
Mobile cloud computing becomes more popular in recent years because of the availability of the internet and smartphones. Maintaining security in mobile clouds is the most challenging issue because mobile devices are having limited computational resou
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::05d35ff6336e97c4a6bed4aeda20445f
https://doi.org/10.1007/978-3-030-34080-3_64
https://doi.org/10.1007/978-3-030-34080-3_64
Autor:
Basavaraj S. Anami, Prakash H. Unki
Publikováno v:
NCVPRIPG
The different tissues namely gray matter (GM) white matter (WM), and cerebrospinal fluid (CSF) are spread over the entire brain. It is difficult to demarcate them individually when a brain image is considered. The boundaries are not well defined. Mod
Autor:
Basavaraj S. Anami, Prakash H. Unki
Publikováno v:
International Journal of Medical Engineering and Informatics. 8:1
In this paper, a method is proposed for classification of brain magnetic resonance imaging (MRI) images as tumour and non-tumour. A multilevel thresholding is used for segmentation. Thresholding is applied to convert MRI images to binary images. Frac