Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Pragada, Shivaramakrishna"'
Let $G$ be a graph of order $n$ with eigenvalues $\lambda_1 \geq \cdots \geq\lambda_n$. Let \[s^+(G)=\sum_{\lambda_i>0} \lambda_i^2, \qquad s^-(G)=\sum_{\lambda_i<0} \lambda_i^2.\] The smaller value, $s(G)=\min\{s^+(G), s^-(G)\}$ is called the \emph{
Externí odkaz:
http://arxiv.org/abs/2409.18220
For a graph $G$, let $\lambda_2(G)$ denote the second largest eigenvalue of the adjacency matrix of $G$. We determine the extremal trees with maximum/minimum adjacency eigenvalue $\lambda_2$ in the class $\mathcal{T}(n,d)$ of $n$-vertex trees with di
Externí odkaz:
http://arxiv.org/abs/2409.01431
Bollob\'as and Nikiforov conjectured that for any graph $G \neq K_n$ with $m$ edges \[ \lambda_1^2+\lambda_2^2\le \bigg( 1-\frac{1}{\omega(G)}\bigg)2m\] where $\lambda_1$ and $\lambda_2$ denote the two largest eigenvalues of the adjacency matrix $A(G
Externí odkaz:
http://arxiv.org/abs/2407.19341
In 2010, Butler introduced the unfolding operation on a bipartite graph to produce two bipartite graphs, which are cospectral for the adjacency and the normalized Laplacian matrices. In this article, we describe how the idea of unfolding a bipartite
Externí odkaz:
http://arxiv.org/abs/2401.03035
This paper investigates the asymptotic nature of graph spectra when some edges of a graph are subdivided sufficiently many times. In the special case where all edges of a graph are subdivided, we find the exact limits of the $k$-th largest and $k$-th
Externí odkaz:
http://arxiv.org/abs/2303.10488
A signed graph $\Sigma = (G, \sigma)$ is a graph where the function $\sigma$ assigns either $1$ or $-1$ to each edge of the simple graph $G$. The adjacency matrix of $\Sigma$, denoted by $A(\Sigma)$, is defined canonically. In a recent paper, Wang et
Externí odkaz:
http://arxiv.org/abs/2204.09870
Publikováno v:
Discrete Mathematics 345 (8), 112916 (2024)
In this article, we construct bipartite graphs which are cospectral for both the adjacency and normalized Laplacian matrices using partitioned tensor product. This extends the construction of Ji, Gong, and Wang \cite{ji-gong-wang}. Our proof of the c
Externí odkaz:
http://arxiv.org/abs/2110.09034
A complex unit gain graph ($\mathbb{T}$-gain graph), $\Phi = (G, \varphi)$ is a graph where the function $\varphi$ assigns a unit complex number to each orientation of an edge of $G$, and its inverse is assigned to the opposite orientation. A $ \math
Externí odkaz:
http://arxiv.org/abs/2102.07560
Publikováno v:
American Journal of Combinatorics, Volume 1 (2022), Pages 20-39. Link: https://ajcombinatorics.org/articles.html
We propose the notion of normalized Laplacian matrix $\mathcal{L}(\Phi)$ for a gain graphs and study its properties in detail, providing insights and counterexamples along the way. We establish bounds for the eigenvalues of $\mathcal{L}(\Phi)$ and ch
Externí odkaz:
http://arxiv.org/abs/2009.13788
In [Steve Butler. A note about cospectral graphs for the adjacency and normalized Laplacian matrices. Linear Multilinear Algebra, 58(3-4):387-390, 2010.], Butler constructed a family of bipartite graphs, which are cospectral for both the adjacency an
Externí odkaz:
http://arxiv.org/abs/2002.00636