Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Prado, Rafaela F. do"'
In this paper we study geodesics on adjoint orbits of $SL(n,\mathbb{R})$ equipped with $SO(n)$-invariant metrics (maximal compact subgroup). Our main technique is translate this problem into a geometric problem in the tangent bundle of certain $SO(n)
Externí odkaz:
http://arxiv.org/abs/2203.05514
Autor:
Prado, Rafaela F. do, Grama, Lino
In this work we study properties of stability and non-stability of harmonic maps under the homogeneous Ricci flow. We provide examples where the stability (non-stability) is preserved under the Ricci flow and an example where the Ricci flow does not
Externí odkaz:
http://arxiv.org/abs/1701.05396
Autor:
Prado, Rafaela F. do, Grama, Lino
We study conjugate points along homogeneous geodesics in generalized flag manifolds. This is done by analyzing the second variation of the energy of such geodesics. We also give an example of how the homogeneous Ricci flow can evolve in such way to p
Externí odkaz:
http://arxiv.org/abs/1602.07660
Autor:
Prado Rafaela F. do, Grama Lino
Publikováno v:
Complex Manifolds, Vol 5, Iss 1, Pp 122-132 (2018)
In this work we study properties of stability and non-stability of harmonic maps under the homogeneous Ricci flow.We provide examples where the stability (non-stability) is preserved under the Ricci flow and an example where the Ricci flow does not p
Externí odkaz:
https://doaj.org/article/b6fcf73549654e2c9c01b812a1e7b652
Autor:
Prado, Rafaela F. do, Grama, Lino
Publikováno v:
Annals of Global Analysis & Geometry; Apr2019, Vol. 55 Issue 3, p451-477, 27p
Autor:
Prado, Rafaela F. do, Roitman, Pedro
Publikováno v:
Bulletin of the London Mathematical Society; Aug2012, Vol. 44 Issue 4, p803-813, 11p