Zobrazeno 1 - 10
of 39
pro vyhledávání: '"Prabhakar fractional calculus"'
Autor:
George A. Anastassiou
Publikováno v:
Cubo, Vol 23, Iss 3, Pp 423-440 (2021)
Here we introduce the generalized Prabhakar fractional calculus and we also combine it with the generalized Hilfer calculus. We prove that the generalized left and right side Prabhakar fractional integrals preserve continuity and we find tight upper
Externí odkaz:
https://doaj.org/article/243badd0273945a0aea52f58ad2acea4
Publikováno v:
Advances in Difference Equations, Vol 2020, Iss 1, Pp 1-13 (2020)
Abstract We consider two models of fractional calculus which are defined using three-parameter Mittag-Leffler functions: the Prabhakar definition and a recently defined extension of the Atangana–Baleanu definition. By examining the relationships be
Externí odkaz:
https://doaj.org/article/59242ca1383946ae8107babc027539eb
Autor:
George A. Anastassiou
Publikováno v:
Fractal and Fractional, Vol 5, Iss 4, p 158 (2021)
Here we extended our earlier fractional monotone approximation theory to abstract fractional monotone approximation, with applications to Prabhakar fractional calculus and non-singular kernel fractional calculi. We cover both the left and right sides
Externí odkaz:
https://doaj.org/article/a5ee1018ca614e1e9e52b2ffcf0de0c2
Publikováno v:
Fractal and Fractional, Vol 4, Iss 4, p 51 (2020)
We construct admissible circulant Laplacian matrix functions as generators for strictly increasing random walks on the integer line. These Laplacian matrix functions refer to a certain class of Bernstein functions. The approach has connections with b
Externí odkaz:
https://doaj.org/article/1e17de1aa36d41b28c6b21ea5e734c73
Autor:
Arran Fernandez, Iftikhar Husain
Publikováno v:
Fractal and Fractional, Vol 4, Iss 3, p 45 (2020)
Mittag-Leffler functions and their variations are a popular topic of study at the present time, mostly due to their applications in fractional calculus and fractional differential equations. Here we propose a modification of the usual Mittag-Leffler
Externí odkaz:
https://doaj.org/article/4d555f4a86684c8ea2cdb36b4f4e5bcb
Publikováno v:
Fractal and Fractional, Vol 4, Iss 51, p 51 (2020)
Fractal and Fractional
Fractal and Fractional, MDPI, 2020, Special Issue "Fractional Behavior in Nature 2019", 4, ⟨10.3390/fractalfract4040051⟩
Volume 4
Issue 4
Fractal and Fractional
Fractal and Fractional, MDPI, 2020, Special Issue "Fractional Behavior in Nature 2019", 4, ⟨10.3390/fractalfract4040051⟩
Volume 4
Issue 4
We construct admissible circulant Laplacian matrix functions as generators for strictly increasing random walks on the integer line. These Laplacian matrix functions refer to a certain class of Bernstein functions. The approach has connections with b
Publikováno v:
Physica A: Statistical Mechanics and its Applications
Physica A: Statistical Mechanics and its Applications, Elsevier, 2021, ⟨10.1016/j.physa.2020.125541⟩
Physica A: Statistical Mechanics and its Applications, Elsevier, 2021, ⟨10.1016/j.physa.2020.125541⟩
Accepted Physica A; International audience; Recently the so-called Prabhakar generalization of the fractional Poisson counting process attracted much interest for his flexibility to adapt real world situations. In this renewal process the waiting tim
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::686ec133e7bc437143a775f343058736
https://hal.archives-ouvertes.fr/hal-02589793/file/arXiv-2005.06925.pdf
https://hal.archives-ouvertes.fr/hal-02589793/file/arXiv-2005.06925.pdf
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Physica A: Statistical Mechanics and its Applications. 565:125541
Recently the so-called Prabhakar generalization of the fractional Poisson counting process attracted much interest for his flexibility to adapt to real world situations. In this renewal process the waiting times between events are IID continuous rand