Zobrazeno 1 - 10
of 144
pro vyhledávání: '"Pozdeyev E"'
Autor:
Stanek, R., Boffo, C., Chandrasekaran, S., Dixon, S., Harms, E., Kokoska, L., Kourbanis, I., Leibfritz, J., Napoly, O., Passarelli, D., Pozdeyev, E., Rowe, A.
The Proton Improvement Plan II (PIP-II) project is an essential upgrade to Fermilab's particle accelerator complex to enable the world's most intense neutrino beam for LBNF/DUNE and a broad particle physics program for many decades to come. PIP-II wi
Externí odkaz:
http://arxiv.org/abs/2311.05456
Autor:
Wijethunga, S. A. K., Eddy, N., Eldred, J., Tan, C. Y., Fellenz, B., Pozdeyev, E., Sharankova, R. V.
Fermilab Booster synchrotron requires an intensity upgrade from 4.5x1012 to 6.5x1012 protons per pulse as a part of Fermilab's Proton Improvement Plan-II (PIP-II). One of the factors which may limit the high-intensity performance is the fast transver
Externí odkaz:
http://arxiv.org/abs/2307.10450
Autor:
Neuffer, D., Belomestnykh, S., Checchin, M., Johnson, D., Posen, S., Pozdeyev, E., Pronskikh, V., Saini, A., Solyak, N., Yakovlev, V.
Increasing the Fermilab Main Injector (MI) beam power above ~1.2 MW requires replacement of the 8 GeV Booster by a higher intensity alternative. Earlier, rapid-cycling synchrotron and linac solutions were considered for this purpose. In this paper, w
Externí odkaz:
http://arxiv.org/abs/2208.11765
Fermilab Booster synchrotron requires an intensity upgrade from 4.5x1012 to 6.5x1012 protons per pulse as a part of Fermilabs Proton Improvement Plan-II (PIP-II). One of the factors which may limit the high-intensity performance is the fast transvers
Externí odkaz:
http://arxiv.org/abs/2208.04401
Autor:
Eldred, J., Ainsworth, R., Alexahin, Y., Bhat, C., Chattopadhyay, S., Derwent, P., Johnson, D., Johnstone, C., Johnstone, J., Kourbanis, I., Lebedev, V., Nagaitsev, S., Pellico, W., Pozdeyev, E., Shiltsev, V., Syphers, M., Tan, C. Y., Valishev, A., Zwaska, R.
DUNE/LBNF constitutes an international multi-decadal physics program for leading-edge neutrino science and proton decay studies [1] and is expected to serve as the flagship particle experiment based at Fermilab.
Externí odkaz:
http://arxiv.org/abs/2203.08707
An 8 GeV Linac as the Booster Replacement in the Fermilab Power Upgrade: a Snowmass 2021 White Paper
Autor:
Belomestnykh, S., Checchin, M., Johnson, D., Neuffer, D., Padamsee, H., Posen, S., Pozdeyev, E., Pronskikh, V., Saini, A., Solyak, N., Yakovlev, V.
Following the PIP-II 800 MeV Linac, Fermilab will need an accelerator that extends from that linac to the MI injection energy of ~8 GeV, completing the modernization of the Fermilab high-intensity accelerator complex. This will maximize the beam avai
Externí odkaz:
http://arxiv.org/abs/2203.05052
Autor:
Ainsworth, R., Dey, J., Eldred, J., Harnik, R., Jarvis, J., Johnson, D. E., Kourbanis, I., Neuffer, D., Pozdeyev, E., Syphers, M. J., Valishev, A., Yakovlev, V. P., Zwaska, R.
The completion of the PIP-II project and its superconducting linear accelerator will provide up to 1.2 MW of beam power to the LBNF/DUNE facility for neutrino physics. It will also be able to produce high-power beams directly from the linac that can
Externí odkaz:
http://arxiv.org/abs/2106.02133
Autor:
Boer, D., Diehl, M., Milner, R., Venugopalan, R., Vogelsang, W., Accardi, A., Aschenauer, E., Burkardt, M., Ent, R., Guzey, V., Hasch, D., Kumar, K., Lamont, M. A. C., Li, Y., Marciano, W. J., Marquet, C., Sabatie, F., Stratmann, M., Yuan, F., Abeyratne, S., Ahmed, S., Aidala, C., Alekhin, S., Anselmino, M., Avakian, H., Bacchetta, A., Bartels, J., BC, H., Beebe-Wang, J., Belomestnykh, S., Ben-Zvi, I., Beuf, G., Blumlein, J., Blaskiewicz, M ., Bogacz, A., Brodsky, S. J., Burton, T., Calaga, R., Chang, X., Cherednikov, I. O., Chevtsov, P., Chirilli, G. A., Atti, C. Ciofi degli, Cloet, I. C., Cooper-Sarkar, A., Debbe, R., Derbenev, Ya., Deshpande, A., Dominguez, F., Dumitru, A., Dupre, R., Erdelyi, B., Faroughy, C., Fazio, S., Fedotov, A., Forshaw, J. R., Geraud, R., Gallmeister, K., Gamberg, L., Gao, J. -H., Gassner, D., Gelis, F., Gilfoyle, G. P., Goldstein, G., Golec-Biernat, K., Goncalves, V. P., Gonderinger, M., Guzzi, M., Hagler, P., Hahn, H., Hammons, L., Hao, Y., He, P., Horn, T., Horowitz, W. A., Huang, M., Hutton, A., Jager, B., Jackson, W., Jain, A., Johnson, E. C., Kang, Z. -B., Kaptari, L. P., Kayran, D., Kewisch, J., Koike, Y., Kondratenko, A., Kopeliovich, B. Z., Kovchegov, Y. V., Krafft, G., Kroll, P., Kumano, S., Kumericki, K., Lappi, T., Lautenschlager, T., Li, R., Liang, Z. -T., Litvinenko, V. N., Liuti, S., Luo, Y., Muller, D., Mahler, G., Majumder, A., Manikonda, S., Marhauser, F., McIntyre, G., Meskauskas, M., Meng, W., Metz, A., Mezzetti, C. B., Miller, G. A., Minty, M., Moch, S. -O., Morozov, V., Mosel, U., Motyka, L., Moutarde, H., Mulders, P. J., Musch, B., Nadel-Turonski, P., Nadolsky, P., Olness, F., Ostrumov, P. N., Parker, B., Pasquini, B., Passek-Kumericki, K., Pikin, A., Pilat, F., Pire, B., Pirner, H., Pisano, C., Pozdeyev, E., Prokudin, A., Ptitsyn, V., Qian, X., Qiu, J. -W., Radici, M., Radyushkin, A., Rao, T., Rimmer, R., Ringer, F., Riordan, S., Rogers, T., Rojo, J., Roser, T., Sandapen, R., Sassot, R., Satogata, T., Sayed, H., Schafer, A., Schnell, G., Schweitzer, P., Sheehy, B., Skaritka, J., Soyez, G., Spata, M., Spiesberger, H., Stasto, A. M., Stefanis, N. G., Strikman, M., Sullivan, M., Szymanowski, L., Tanaka, K., Taneja, S., Tepikian, S., Terzic, B., Than, Y., Toll, T., Trbojevic, D., Tsentalovich, E., Tsoupas, N., Tuchin, K., Tuozzolo, J., Ullrich, T., Vossen, A., Wallon, S., Wang, G., Wang, H., Wang, X. -N., Webb, S., Weiss, C., Wu, Q., Xiao, B. -W., Xu, W., Yunn, B., Zelenski, A., Zhang, Y., Zhou, J., Zurita, P.
This report is based on a ten-week program on "Gluons and the quark sea at high-energies", which took place at the Institute for Nuclear Theory in Seattle in Fall 2010. The principal aim of the program was to develop and sharpen the science case for
Externí odkaz:
http://arxiv.org/abs/1108.1713
Autor:
Satogata, T., Ahrens, L., Bai, M., Brennan, J. M., Bruno, D., Butler, J., Drees, A., Fedotov, A., Fischer, W., Harvey, M., Hayes, T., Jappe, W., Lee, R. C., MacKay, W. W., Malitsky, N., Marr, G., Michnoff, R., Oerter, B., Pozdeyev, E., Roser, T., Severino, F., Smith, K., Tepikian, S., Tsoupas, N.
Publikováno v:
PoSCPOD07:051,2007
There is significant interest in RHIC heavy ion collisions at $\sqrt{s_{NN}}=$5--50 GeV, motivated by a search for the QCD phase transition critical point. The lowest energies for this search are well below the nominal RHIC gold injection collision e
Externí odkaz:
http://arxiv.org/abs/0710.2485
Autor:
Marti, F., York, R. C., Blosser, H., Gordon, M. M., Gorelov, D., Grimm, T., Johnson, D., Miller, P., Pozdeyev, E., Vincent, J., Wu, X., Zeller, A.
The creation of intense radioactive beams requires intense and energetic primary beams. A task force analysis of this subject recommended an acceleration system capable of 400 MeV/u uranium at 1 particle uA as an appropriate driver for such a facilit
Externí odkaz:
http://arxiv.org/abs/nucl-ex/9908013