Zobrazeno 1 - 10
of 5 187
pro vyhledávání: '"Power sums"'
We study nonnegative and sums of squares symmetric (and even symmetric) functions of fixed degree. We can think of these as limit cones of symmetric nonnegative polynomials and symmetric sums of squares of fixed degree as the number of variables goes
Externí odkaz:
http://arxiv.org/abs/2408.04616
We consider ideals in a polynomial ring generated by collections of power sum polynomials, and obtain conditions under which these define complete intersection rings, normal domains, and unique factorization domains. We also settle a key case of a co
Externí odkaz:
http://arxiv.org/abs/2409.18906
Autor:
Kowalenko, Victor1 (AUTHOR) vkowa@unimelb.edu.au
Publikováno v:
Algorithms. Aug2024, Vol. 17 Issue 8, p373. 46p.
Autor:
Bazsó, András
We prove effective finiteness results concerning polynomial values of the sums $$ b^k +\left(a+b\right)^k + \cdots + \left(a\left(x-1\right) + b\right)^k $$ and $$ b^k - \left(a+b\right)^k + \left(2a+b\right)^k - \ldots + (-1)^{x-1} \left(a\left(x-1\
Externí odkaz:
http://arxiv.org/abs/2404.16535
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
FUCHS, Clemens, HEINTZE, Sebastian
Publikováno v:
Journal de Théorie des Nombres de Bordeaux, 2023 Jan 01. 35(1), 63-86.
Externí odkaz:
https://www.jstor.org/stable/48728090
Autor:
Liu, Ricky Ini, Tang, Michael
The algebra of quasisymmetric functions QSym and the shuffle algebra of compositions Sh are isomorphic as graded Hopf algebras (in characteristic zero), and isomorphisms between them can be specified via shuffle bases of QSym. We use the notion of in
Externí odkaz:
http://arxiv.org/abs/2310.09371
Autor:
Sanna, Carlo
For every nonnegative integer $n$, let $r_F(n)$ be the number of ways to write $n$ as a sum of Fibonacci numbers, where the order of the summands does not matter. Moreover, for all positive integers $p$ and $N$, let \begin{equation*} S_{F}^{(p)}(N) :
Externí odkaz:
http://arxiv.org/abs/2309.12724
Autor:
Blekherman, Grigoriy, Raymond, Annie
Graph density profiles are fundamental objects in extremal combinatorics. Very few profiles are fully known, and all are two-dimensional. We show that even in high dimensions ratios of graph densities and numbers often form the power-sum profile (the
Externí odkaz:
http://arxiv.org/abs/2308.07422