Zobrazeno 1 - 10
of 356
pro vyhledávání: '"Poulain, Alexandre"'
Autor:
Elbar, Charles, Poulain, Alexandre
We propose a new generalized compressible diphasic Navier-Stokes Cahn-Hilliard model that we name G-NSCH. This new G-NSCH model takes into account important properties of diphasic compressible fluids such as possible non-matching densities and contra
Externí odkaz:
http://arxiv.org/abs/2305.05623
The Keller-Segel model is a well-known system representing chemotaxis in living organisms. We study the convergence of a generalized nonlinear variant of the Keller-Segel to the degenerate Cahn-Hilliard system. This analysis is made possible from the
Externí odkaz:
http://arxiv.org/abs/2112.10394
Motivated by biological applications on tumour invasion through thin membranes, we study a porous-medium type equation where the density of the cell population evolves under Darcy's law, assuming continuity of both the density and flux velocity on th
Externí odkaz:
http://arxiv.org/abs/2105.02063
Autor:
Poulain, Alexandre, Schratz, Katharina
We carry out the convergence analysis of the Scalar Auxiliary Variable (SAV) method applied to the nonlinear Schr\"odinger equation which preserves a modified Hamiltonian on the discrete level. We derive a weak and strong convergence result, establis
Externí odkaz:
http://arxiv.org/abs/2012.13943
Autor:
Almeida, Luis, Estrada-Rodriguez, Gissell, Oliver, Lisa, Peurichard, Diane, Poulain, Alexandre, Vallette, Francois
Motivated by experimental observations in 3D/organoid cultures derived from glioblastoma, we develop a mathematical model where tumour aggregate formation is obtained as the result of nutrient-limited cell proliferation coupled with chemotaxis-based
Externí odkaz:
http://arxiv.org/abs/2007.12454
Autor:
Poulain, Alexandre
We describe and analyze a finite element numerical scheme for the parabolic-parabolic Keller-Segel model. The scalar auxiliary variable method is used to retrieve the monotonic decay of the energy associated with the system at the discrete level. Thi
Externí odkaz:
http://arxiv.org/abs/2007.01601
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Chen, Ji, Hu, Gongren, Liu, Jiang, Poulain, Alexandre J., Pu, Qiang, Huang, Rong, Meng, Bo, Feng, Xinbin
Publikováno v:
In Journal of Hazardous Materials 15 October 2023 460
Autor:
Poulain, Alexandre, Bubba, Federica
We propose and analyze a finite element approximation of the relaxed Cahn-Hilliard equation with singular single-well potential of Lennard-Jones type and degenerate mobility that is energy stable and nonnegativity preserving. The Cahn-Hilliard model
Externí odkaz:
http://arxiv.org/abs/1910.13211
Relaxation of the Cahn-Hilliard equation with singular single-well potential and degenerate mobility
Autor:
Perthame, Benoît, Poulain, Alexandre
The degenerate Cahn-Hilliard equation is a standard model to describe living tissues. It takes into account cell populations undergoing short-range attraction and long-range repulsion effects. In this framework, we consider the usual Cahn-Hilliard eq
Externí odkaz:
http://arxiv.org/abs/1908.11294