Zobrazeno 1 - 10
of 56
pro vyhledávání: '"Potok, Thomas E."'
Autor:
Song, Shuaiwen Leon, Kruft, Bonnie, Zhang, Minjia, Li, Conglong, Chen, Shiyang, Zhang, Chengming, Tanaka, Masahiro, Wu, Xiaoxia, Rasley, Jeff, Awan, Ammar Ahmad, Holmes, Connor, Cai, Martin, Ghanem, Adam, Zhou, Zhongzhu, He, Yuxiong, Luferenko, Pete, Kumar, Divya, Weyn, Jonathan, Zhang, Ruixiong, Klocek, Sylwester, Vragov, Volodymyr, AlQuraishi, Mohammed, Ahdritz, Gustaf, Floristean, Christina, Negri, Cristina, Kotamarthi, Rao, Vishwanath, Venkatram, Ramanathan, Arvind, Foreman, Sam, Hippe, Kyle, Arcomano, Troy, Maulik, Romit, Zvyagin, Maxim, Brace, Alexander, Zhang, Bin, Bohorquez, Cindy Orozco, Clyde, Austin, Kale, Bharat, Perez-Rivera, Danilo, Ma, Heng, Mann, Carla M., Irvin, Michael, Pauloski, J. Gregory, Ward, Logan, Hayot, Valerie, Emani, Murali, Xie, Zhen, Lin, Diangen, Shukla, Maulik, Foster, Ian, Davis, James J., Papka, Michael E., Brettin, Thomas, Balaprakash, Prasanna, Tourassi, Gina, Gounley, John, Hanson, Heidi, Potok, Thomas E, Pasini, Massimiliano Lupo, Evans, Kate, Lu, Dan, Lunga, Dalton, Yin, Junqi, Dash, Sajal, Wang, Feiyi, Shankar, Mallikarjun, Lyngaas, Isaac, Wang, Xiao, Cong, Guojing, Zhang, Pei, Fan, Ming, Liu, Siyan, Hoisie, Adolfy, Yoo, Shinjae, Ren, Yihui, Tang, William, Felker, Kyle, Svyatkovskiy, Alexey, Liu, Hang, Aji, Ashwin, Dalton, Angela, Schulte, Michael, Schulz, Karl, Deng, Yuntian, Nie, Weili, Romero, Josh, Dallago, Christian, Vahdat, Arash, Xiao, Chaowei, Gibbs, Thomas, Anandkumar, Anima, Stevens, Rick
In the upcoming decade, deep learning may revolutionize the natural sciences, enhancing our capacity to model and predict natural occurrences. This could herald a new era of scientific exploration, bringing significant advancements across sectors fro
Externí odkaz:
http://arxiv.org/abs/2310.04610
Autor:
Parsa, Maryam, Schuman, Catherine D., Date, Prasanna, Rose, Derek C., Kay, Bill, Mitchell, J. Parker, Young, Steven R., Dellana, Ryan, Severa, William, Potok, Thomas E., Roy, Kaushik
Training neural networks for neuromorphic deployment is non-trivial. There have been a variety of approaches proposed to adapt back-propagation or back-propagation-like algorithms appropriate for training. Considering that these networks often have v
Externí odkaz:
http://arxiv.org/abs/2005.04171
Autor:
Dimovska, Mihaela, Johnston, Travis, Schuman, Catherine D., Mitchell, J. Parker, Potok, Thomas E.
Inspired by the connectivity mechanisms in the brain, neuromorphic computing architectures model Spiking Neural Networks (SNNs) in silicon. As such, neuromorphic architectures are designed and developed with the goal of having small, low power chips
Externí odkaz:
http://arxiv.org/abs/2002.01406
Autor:
Patton, Robert M., Johnston, J. Travis, Young, Steven R., Schuman, Catherine D., Potok, Thomas E., Rose, Derek C., Lim, Seung-Hwan, Chae, Junghoon, Hou, Le, Abousamra, Shahira, Samaras, Dimitris, Saltz, Joel
Deep learning, through the use of neural networks, has demonstrated remarkable ability to automate many routine tasks when presented with sufficient data for training. The neural network architecture (e.g. number of layers, types of layers, connectio
Externí odkaz:
http://arxiv.org/abs/1909.12291
Autor:
Song, Linghao, Chen, Fan, Young, Steven R., Schuman, Catherine D., Perdue, Gabriel, Potok, Thomas E.
We present a deep learning approach for vertex reconstruction of neutrino-nucleus interaction events, a problem in the domain of high energy physics. In this approach, we combine both energy and timing data that are collected in the MINERvA detector
Externí odkaz:
http://arxiv.org/abs/1902.00743
Autor:
Schuman, Catherine D., Potok, Thomas E., Patton, Robert M., Birdwell, J. Douglas, Dean, Mark E., Rose, Garrett S., Plank, James S.
Neuromorphic computing has come to refer to a variety of brain-inspired computers, devices, and models that contrast the pervasive von Neumann computer architecture. This biologically inspired approach has created highly connected synthetic neurons a
Externí odkaz:
http://arxiv.org/abs/1705.06963
Autor:
Potok, Thomas E., Schuman, Catherine, Young, Steven R., Patton, Robert M., Spedalieri, Federico, Liu, Jeremy, Yao, Ke-Thia, Rose, Garrett, Chakma, Gangotree
Current Deep Learning approaches have been very successful using convolutional neural networks (CNN) trained on large graphical processing units (GPU)-based computers. Three limitations of this approach are: 1) they are based on a simple layered netw
Externí odkaz:
http://arxiv.org/abs/1703.05364
Publikováno v:
In Journal of Systems Architecture 2006 52(8):505-515
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
ACM International Conference Proceeding Series; 7/28/2020, p1-4, 4p