Zobrazeno 1 - 10
of 73
pro vyhledávání: '"Posthuma H"'
Publikováno v:
Commun. Number Theory Phys. 17 (2023), no. 3, 643-708
We consider the Hurwitz Dubrovin--Frobenius manifold structure on the space of meromorphic functions on the Riemann sphere with exactly two poles, one simple and one of arbitrary order. We prove that the all genera partition function (also known as t
Externí odkaz:
http://arxiv.org/abs/2211.12259
Publikováno v:
Lett. Math. Phys. 111 (2021), no. 3, paper no. 63, 67 pages
We consider the Dubrovin--Frobenius manifold of rank $2$ whose genus expansion at a special point controls the enumeration of a higher genera generalization of the Catalan numbers, or, equivalently, the enumeration of maps on surfaces, ribbon graphs,
Externí odkaz:
http://arxiv.org/abs/2012.03239
We revisit the cohomological index theorem for elliptic elements in the universal enveloping algebra of a Lie groupoid previously proved by the authors. We prove a Thom isomorphism for Lie algebroids which enables us to rewrite the "topological side"
Externí odkaz:
http://arxiv.org/abs/1308.0236
Given a proper, cocompact action of a Lie groupoid, we define a higher index pairing between invariant elliptic differential operators and smooth groupoid cohomology classes. We prove a cohomological index formula for this pairing by applying the van
Externí odkaz:
http://arxiv.org/abs/1301.0479
We propose to study deformation quantizations of Whitney functions. To this end, we extend the notion of a deformation quantization to algebras of Whitney functions over a singular set, and show the existence of a deformation quantization of Whitney
Externí odkaz:
http://arxiv.org/abs/1202.5575
We define the "localized index" of longitudinal elliptic operators on Lie groupoids associated to Lie algebroid cohomology classes. We derive a topological expression for these numbers using the algebraic index theorem for Poisson manifolds on the du
Externí odkaz:
http://arxiv.org/abs/1112.4857
Publikováno v:
J. Geom. Phys. 62 (2012), no. 7, 1639--1651
In our recent paper we proved the polynomiality of a Poisson bracket for a class of infinite-dimensional Hamiltonian systems of PDE's associated to semi-simple Frobenius structures. In the conformal (homogeneous) case, these systems are exactly the h
Externí odkaz:
http://arxiv.org/abs/1104.2722
In this paper, we study geometric properties of quotient spaces of proper Lie groupoids. First, we construct a natural stratification on such spaces using an extension of the slice theorem for proper Lie groupoids of Weinstein and Zung. Next, we show
Externí odkaz:
http://arxiv.org/abs/1101.0180
Publikováno v:
J. Differ. Geom. 92 (2012), no. 1, 153--185
We define a hierarchy of Hamiltonian PDEs associated to an arbitrary tau-function in the semi-simple orbit of the Givental group action on genus expansions of Frobenius manifolds. We prove that the equations, the Hamiltonians, and the bracket are wei
Externí odkaz:
http://arxiv.org/abs/1009.5351
In this paper we construct an explicit quasi-isomorphism to study the cyclic cohomology of a deformation quantization over a riemannian \'etale groupoid. Such a quasi-isomorphism allows us to propose a general algebraic index problem for riemannian \
Externí odkaz:
http://arxiv.org/abs/0812.3975