Zobrazeno 1 - 10
of 534
pro vyhledávání: '"Post-stratification"'
Publikováno v:
Journal of Statistics and Data Science Education, Vol 32, Iss 4, Pp 405-415 (2024)
While many instructors are aware of the Literary Digest 1936 poll as an example of biased sampling methods, this article details potential further explorations for the Digest’s 1924–1936 quadrennial U.S. presidential election polls. Potential act
Externí odkaz:
https://doaj.org/article/ca19e2c31073406089644d18011afb3e
Autor:
Pete Driezen, Shannon Gravely, Karin A. Kasza, Mary E. Thompson, K. Michael Cummings, Andrew Hyland, Geoffrey T. Fong
Publikováno v:
Population Health Metrics, Vol 22, Iss 1, Pp 1-14 (2024)
Abstract Background Targeted marketing of menthol cigarettes in the US influences disparities in the prevalence of menthol smoking. There has been no analysis of sub-national data documenting differences in use across demographic subgroups. This stud
Externí odkaz:
https://doaj.org/article/ee927636026443db9f997c017d8d2855
Autor:
Amirhossein Alvandi, Armin Hatefi
Publikováno v:
Stats, Vol 6, Iss 3, Pp 812-838 (2023)
In surveys requiring cost efficiency, such as medical research, measuring the variable of interest (e.g., disease status) is expensive and/or time-consuming; however, we often have access to easily obtainable characteristics about sampling units. The
Externí odkaz:
https://doaj.org/article/4c66e21e19f24d909a85ebc829cdb698
Observed versus estimated actual trend of COVID-19 case numbers in Cameroon: A data-driven modelling
Autor:
Arsène Brunelle Sandie, Mathurin Cyrille Tejiokem, Cheikh Mbacké Faye, Achta Hamadou, Aristide Abah Abah, Serge Sadeuh Mbah, Paul Alain Tagnouokam-Ngoupo, Richard Njouom, Sara Eyangoh, Ngu Karl Abanda, Maryam Diarra, Slimane Ben Miled, Maurice Tchuente, Jules Brice Tchatchueng-Mbougua
Publikováno v:
Infectious Disease Modelling, Vol 8, Iss 1, Pp 228-239 (2023)
Controlling the COVID-19 outbreak remains a challenge for Cameroon, as it is for many other countries worldwide. The number of confirmed cases reported by health authorities in Cameroon is based on observational data, which is not nationally represen
Externí odkaz:
https://doaj.org/article/fca673fcc5c5486c8e5e62b9f50557e3
Publikováno v:
Symmetry, Vol 16, Iss 5, p 604 (2024)
This pioneering investigation introduces two innovative estimators crafted to evaluate the finite population distribution function of a study variable, employing auxiliary variables within the framework of stratified random sampling and post-stratifi
Externí odkaz:
https://doaj.org/article/b1f4778344c24cab97d14e12ed3c8fdf
Publikováno v:
IATSS Research, Vol 46, Iss 3, Pp 322-328 (2022)
Motorcycle crashes are documented in Thailand's national records but are underreported and lacking detail. In-depth motorcycle crash data, collected by Thailand Accident Research Center (TARC), contains a smaller number of motorcycle crashes but more
Externí odkaz:
https://doaj.org/article/95d403e9836a47f398be4fdc73d67fa7
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
James A. Westfall, Mark D. Nelson
Publikováno v:
Forest Ecosystems, Vol 10, Iss , Pp 100099- (2023)
Estimating amounts of change in forest resources over time is a key function of most national forest inventories (NFI). As this information is used broadly for many management and policy purposes, it is imperative that accurate estimations are made f
Externí odkaz:
https://doaj.org/article/39f5b877ea8f4ce085d9a5158fc5a3c4
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
پژوهشهای ریاضی, Vol 7, Iss 2, Pp 397-412 (2021)
The judgment post stratification is a method of stratification of observation by using a key variable, such that stratification will be done after selecting the sample. In this paper, this method will use in two stage cluster sampling. In other words
Externí odkaz:
https://doaj.org/article/f980c3ab4ffd4b67b7564556d216d63a