Zobrazeno 1 - 10
of 35
pro vyhledávání: '"Portegys, Thomas E."'
Autor:
Portegys, Thomas E.
Publikováno v:
Journal of Artificial Intelligence and Autonomous Intelligence, 2024
This is an examination of some methods that learn causations in event sequences. A causation is defined as a conjunction of one or more cause events occurring in an arbitrary order, with possible intervening non-causal events, that lead to an effect.
Externí odkaz:
http://arxiv.org/abs/2402.14027
Autor:
Portegys, Thomas E.
Publikováno v:
Journal of Intelligent Systems, Vol 16, Iss 2, Pp 117-134 (2007)
Externí odkaz:
https://doaj.org/article/3d01f90f0d984234afcb423b6651a272
Autor:
Portegys, Thomas E.
Biological neural networks operate in the presence of task disruptions as they guide organisms toward goals. A familiar stream of stimulus-response causations can be disrupted by subtask streams imposed by the environment. For example, taking a famil
Externí odkaz:
http://arxiv.org/abs/2207.06482
Autor:
Portegys, Thomas E.
This study compares the modularity performance of two artificial neural network architectures: a Long Short-Term Memory (LSTM) recurrent network, and Morphognosis, a neural network based on a hierarchy of spatial and temporal contexts. Mazes are used
Externí odkaz:
http://arxiv.org/abs/2104.11410
Autor:
Portegys, Thomas E.
Artificial intelligence research to a great degree focuses on the brain and behaviors that the brain generates. But the brain, an extremely complex structure resulting from millions of years of evolution, can be viewed as a solution to problems posed
Externí odkaz:
http://arxiv.org/abs/1701.02272
Autor:
Portegys, Thomas E.
A method for improving the efficiency of graph isomorphism testing is presented. The method uses the structure of the graph colored by vertex hash codes as a means of partitioning vertices into equivalence classes, which in turn reduces the combinato
Externí odkaz:
http://arxiv.org/abs/1606.00001
Autor:
Portegys, Thomas E.
It is well known that artificial neural networks (ANNs) can learn deterministic automata. Learning nondeterministic automata is another matter. This is important because much of the world is nondeterministic, taking the form of unpredictable or proba
Externí odkaz:
http://arxiv.org/abs/1507.04029
Publikováno v:
In BioSystems November 2018 173:256-265
Autor:
Portegys, Thomas E.
Publikováno v:
In Neurocomputing 30 November 2015 168:128-134
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.