Zobrazeno 1 - 10
of 81
pro vyhledávání: '"Porta, Federica"'
Publikováno v:
In EURO Journal on Computational Optimization 2024 12
Autor:
Cascarano, Pasquale, Sebastiani, Andrea, Comes, Maria Colomba, Franchini, Giorgia, Porta, Federica
In the last decades, unsupervised deep learning based methods have caught researchers attention, since in many real applications, such as medical imaging, collecting a great amount of training examples is not always feasible. Moreover, the constructi
Externí odkaz:
http://arxiv.org/abs/2009.11380
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Franchini, Giorgia1 giorgia.franchini@unimore.it, Porta, Federica1, Ruggiero, Valeria2, Trombini, Ilaria2,3, Zanni, Luca1
Publikováno v:
Applied Mathematics in Science & Engineering. Dec2023, Vol. 31 Issue 1, p1-19. 19p.
Publikováno v:
Inverse Problems 33 (2017), 055005
We consider a variable metric linesearch based proximal gradient method for the minimization of the sum of a smooth, possibly nonconvex function plus a convex, possibly nonsmooth term. We prove convergence of this iterative algorithm to a critical po
Externí odkaz:
http://arxiv.org/abs/1605.03791
Forward-backward methods are a very useful tool for the minimization of a functional given by the sum of a differentiable term and a nondifferentiable one and their investigation has experienced several efforts from many researchers in the last decad
Externí odkaz:
http://arxiv.org/abs/1506.02900
Publikováno v:
SIAM Journal on Optimization 26 (2016), 891-921
We develop a new proximal-gradient method for minimizing the sum of a differentiable, possibly nonconvex, function plus a convex, possibly non differentiable, function. The key features of the proposed method are the definition of a suitable descent
Externí odkaz:
http://arxiv.org/abs/1506.00385
Publikováno v:
Journal of Scientific Computing 65 (2015), 895-919
Gradient methods are frequently used in large scale image deblurring problems since they avoid the onerous computation of the Hessian matrix of the objective function. Second order information is typically sought by a clever choice of the steplength
Externí odkaz:
http://arxiv.org/abs/1407.2375
Autor:
Franchini, Giorgia, Porta, Federica
Publikováno v:
AIP Conference Proceedings; 2024, Vol. 3094 Issue 1, p1-4, 4p
Publikováno v:
Inverse Problems 29 (2013), 125013
Many real-world applications are addressed through a linear least-squares problem formulation, whose solution is calculated by means of an iterative approach. A huge amount of studies has been carried out in the optimization field to provide the fast
Externí odkaz:
http://arxiv.org/abs/1307.0930