Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Porat, Immanuel Ben"'
We derive the two dimensional incompressible Euler equation as a quasineutral limit of the Vlasov-Poisson equation using a modulated energy approach. We propose a strategy which enables to treat solutions where the gradient of the velocity is merely
Externí odkaz:
http://arxiv.org/abs/2403.14080
This paper is aimed at extending the graph limit with time dependent weights obtained in [1] for the case of a pairwise competition model introduced in [10], in which the equation governing the weights involves a weak singularity at the origin. Well
Externí odkaz:
http://arxiv.org/abs/2311.11536
Publikováno v:
Nonlinear Analysis 2023
The mean field limit with time dependent weights for a 1D singular case, given by the attractive Coulomb interactions, is considered. This extends recent results [1,8] for the case of regular interactions. The approach taken here is based on transfer
Externí odkaz:
http://arxiv.org/abs/2306.01099
Autor:
Porat, Immanuel Ben
The Liouville equation with non-constant magnetic field is obtained as a limit in the Planck constant \hbar of the Heisenberg equation with the same magnetic field. The convergence is with respect to an appropriate semi-classical pseudo distance, and
Externí odkaz:
http://arxiv.org/abs/2210.04375
Autor:
Porat, Immanuel Ben
We give a rigorous derivation of the incompressible 2D Euler equation from the von Neumann equation with magnetic field. The convergence is with respect to the modulated energy functional, and implies weak convergence in the sense of measures. This i
Externí odkaz:
http://arxiv.org/abs/2208.01158
Autor:
Porat, Immanuel Ben, Golse, François
This paper discusses the mean-field limit for the quantum dynamics of $N$ identical bosons in $\mathbf R^3$ interacting via a binary potential with Coulomb type singularity. Our approach is based on the theory of quantum Klimontovich solutions define
Externí odkaz:
http://arxiv.org/abs/2203.13373
Autor:
Porat, Immanuel Ben
Publikováno v:
Kinetic and Related Models, 2022, 15(5): 775-791
This paper studies the regularity of Villani solutions of the space homogeneous Landau equation with Coulomb interaction in dimension 3. Specifically, we prove that any such solution belonging to the Lebesgue space L_{t}^{\infty}L_{v}^{q} with q>3 in
Externí odkaz:
http://arxiv.org/abs/2105.06536
Autor:
Porat, Immanuel Ben
We investigate variants of a Three Circles type Theorem in the context of \mathcal{Q}-valued functions. We prove some convexity inequalities related to the L^{2} growth function in the \mathcal{Q}-valued settings. Optimality of these inequalities and
Externí odkaz:
http://arxiv.org/abs/2003.00084
Autor:
Porat, Immanuel Ben1 (AUTHOR) Immanuel.BenPorat@maths.ox.ac.uk
Publikováno v:
Journal of Statistical Physics. Jul2023, Vol. 190 Issue 7, p1-44. 44p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.