Zobrazeno 1 - 10
of 135
pro vyhledávání: '"Popov, Bojan"'
The paper focuses on first-order invariant-domain preserving approximations of hyperbolic systems. We propose a new way to estimate the artificial viscosity that has to be added to make explicit, conservative, consistent numerical methods invariant-d
Externí odkaz:
http://arxiv.org/abs/2310.01713
This paper is concerned with the approximation of the compressible Euler equations supplemented with an arbitrary or tabulated equation of state. The proposed approximation technique is robust, formally second-order accurate in space, invariant-domai
Externí odkaz:
http://arxiv.org/abs/2207.12832
This paper describes in detail the implementation of a finite element technique for solving the compressible Navier-Stokes equations that is provably robust and demonstrates excellent performance on modern computer hardware. The method is second-orde
Externí odkaz:
http://arxiv.org/abs/2106.02159
The objective of this paper is to propose a hyperbolic relaxation technique for the dispersive Serre-Green-Naghdi equations (also known as the fully non-linear Boussinesq equations) with full topography effects introduced in Green, A.E. and Naghdi, P
Externí odkaz:
http://arxiv.org/abs/2103.01286
Publikováno v:
In Computer Methods in Applied Mechanics and Engineering 1 January 2024 418 Part A
We present a fully discrete approximation technique for the compressible Navier-Stokes equations that is second-order accurate in time and space, semi-implicit, and guaranteed to be invariant domain preserving. The restriction on the time step is the
Externí odkaz:
http://arxiv.org/abs/2009.06022
We introduce a (linear) positive and asymptotic preserving method or solving the one-group radiation transport equation. The approximation in space is discretization agnostic: the space approximation can be done with continuous or discontinuous finit
Externí odkaz:
http://arxiv.org/abs/1905.03390
Publikováno v:
In Journal of Computational Physics 1 April 2023 478
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We introduce an approximation technique for nonlinear hyperbolic systems with sources that is invariant domain preserving. The method is discretization-independent provided elementary symmetry and skew-symmetry properties are satisfied by the scheme.
Externí odkaz:
http://arxiv.org/abs/1807.02563