Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Popolitov, Aleksandr"'
Direct proof of one-hook scaling property for Alexander polynomial from Reshetikhin-Turaev formalism
We prove that normalized colored Alexander polynomial (the $A \rightarrow 1$ limit of colored HOMFLY-PT polynomial) evaluated for one-hook (L-shape) representation R possesses scaling property: it is equal to the fundamental Alexander polynomial with
Externí odkaz:
http://arxiv.org/abs/2410.13676
Publikováno v:
Phys.Lett.B 818 (2021) 136370
Knot matrix models are defined so that the averages of characters are equal to knot polynomials. From this definition one can extract single trace averages and generation functions for them in the group rank - which generalize the celebrated Harer-Za
Externí odkaz:
http://arxiv.org/abs/2102.11187
Autor:
Dunin-Barkowski, Petr, Kazarian, Maxim, Popolitov, Aleksandr, Shadrin, Sergey, Sleptsov, Alexey
Publikováno v:
Adv. Theor. Math. Phys. 26 (2023), no. 4, 793-833
We prove that topological recursion applied to the spectral curve of colored HOMFLY-PT polynomials of torus knots reproduces the n-point functions of a particular partition function called the extended Ooguri-Vafa partition function. This generalizes
Externí odkaz:
http://arxiv.org/abs/2010.11021
Publikováno v:
Phys.Lett. B811 (2020) 135932
We derive the analogues of the Harer-Zagier formulas for single- and double-trace correlators in the q-deformed Hermitian Gaussian matrix model. This fully describes single-trace correlators and opens a road to $q$-deformations of important matrix mo
Externí odkaz:
http://arxiv.org/abs/2008.09577
Using the ideas from the BPS/CFT correspondence, we give an explicit recursive formula for computing supersymmetric Wilson loop averages in 3d $\mathcal{N}=2$ Yang-Mills-Chern-Simons $U(N)$ theory on the squashed sphere $S^3_b$ with one adjoint chira
Externí odkaz:
http://arxiv.org/abs/1909.10352
Publikováno v:
Eur. Phys. J. C 79 (2019) 867
We conjecture explicit evolution formulas for Khovanov polynomials for pretzel knots in some regions in the windings space. Our description is exhaustive for genera 1 and 2. As previously observed, evolution at T != -1 is not fully smooth: it switche
Externí odkaz:
http://arxiv.org/abs/1904.10277
We look at how evolution method deforms, when one considers Khovanov polynomials instead of Jones polynomials. We do this for the figure-eight-like knots (also known as 'double braid' knots, see arXiv:1306.3197) -- a two-parametric family of knots wh
Externí odkaz:
http://arxiv.org/abs/1812.00858
Publikováno v:
Lett Math Phys 110, 179-210 (2020)
We show how q-Virasoro constraints can be derived for a large class of (q,t)-deformed eigenvalue matrix models by an elementary trick of inserting certain q-difference operators under the integral, in complete analogy with full-derivative insertions
Externí odkaz:
http://arxiv.org/abs/1810.00761
Publikováno v:
Commun. Number Theory Phys. 13 (2019), no. 4, 763-826
We rewrite the (extended) Ooguri-Vafa partition function for colored HOMFLY-PT polynomials for torus knots in terms of the free-fermion (semi-infinite wedge) formalism, making it very similar to the generating function for double Hurwitz numbers. Thi
Externí odkaz:
http://arxiv.org/abs/1712.08614
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.