Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Ponsen, Marc"'
Publikováno v:
Journal Of Artificial Intelligence Research, Volume 42, pages 575-605, 2011
This article discusses two contributions to decision-making in complex partially observable stochastic games. First, we apply two state-of-the-art search techniques that use Monte-Carlo sampling to the task of approximating a Nash-Equilibrium (NE) in
Externí odkaz:
http://arxiv.org/abs/1401.4591
Publikováno v:
In Entertainment Computing 2009 1(1):39-45
Publikováno v:
Journal of Artificial Intelligence Research, 42, 575-605. AI Access Foundation
This article discusses two contributions to decision-making in complex partially observable stochastic games. First, we apply two state-of-the-art search techniques that use Monte-Carlo sampling to the task of approximating a Nash-Equilibrium (NE) in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1c7f41264a79ea63e4f113d6dcaf4c48
https://cris.maastrichtuniversity.nl/en/publications/0633d15f-25ba-49d3-ad72-ee2ce2a96329
https://cris.maastrichtuniversity.nl/en/publications/0633d15f-25ba-49d3-ad72-ee2ce2a96329
Autor:
Ponsen, Marc J. V., Croonenborghs, Tom, Tuyls, Karl, Ramon, Jan, Driessens, Kurt, Herik, H. Jaap van den, Postma, Eric O., Babuska, Robert, Groen, Frans C. A.
Publikováno v:
Studies in Computational Intelligence, 45-65
STARTPAGE=45;ENDPAGE=65;TITLE=Studies in Computational Intelligence
Interactive Collaborative Information Systems, 45-63
STARTPAGE=45;ENDPAGE=63;TITLE=Interactive Collaborative Information Systems
Interactive Collaborative Information Systems ISBN: 9783642116872
AAMAS (2)
STARTPAGE=45;ENDPAGE=65;TITLE=Studies in Computational Intelligence
Interactive Collaborative Information Systems, 45-63
STARTPAGE=45;ENDPAGE=63;TITLE=Interactive Collaborative Information Systems
Interactive Collaborative Information Systems ISBN: 9783642116872
AAMAS (2)
Relational reinforcement learning is a promising direction within reinforcement learning research. It upgrades reinforcement learning techniques using relational representations for states, actions, and learned value functions or policies to allow na
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::245b6a0b6cad924c075932c7afa141e9
https://research.tilburguniversity.edu/en/publications/e8c04a80-abc2-4db1-84f0-c9fc01850e3c
https://research.tilburguniversity.edu/en/publications/e8c04a80-abc2-4db1-84f0-c9fc01850e3c
Relational reinforcement learning is a promising new direction within reinforcement learning research. It upgrades reinforcement learning techniques by using relational representations for states, actions and learned value-functions or policies to al
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1131::967ca7380087cc6ca0bc28de0040b38b
http://doi.acm.org/10.1145/1558109.1558222
http://doi.acm.org/10.1145/1558109.1558222
In this paper we investigate the evolutionary dynamics of strategic behaviour in the game of poker by means of data gathered from a large number of real-world poker games. We perform this study from an evolutionary game theoretic perspective using th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1131::294bd455c167019dff0ab1e867f02500
https://lirias.kuleuven.be/handle/123456789/197560
https://lirias.kuleuven.be/handle/123456789/197560
We propose an opponent modeling approach for No-Limit Texas Hold'em poker that starts from a (learned) prior, i.e., general expectations about opponent behavior and learns a relational regression tree-function that adapts these priors to specific opp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1131::bd414cde8e0f24df0a52c85e1c2992ca
https://lirias.kuleuven.be/handle/123456789/186910
https://lirias.kuleuven.be/handle/123456789/186910
Publikováno v:
AI Magazine; Vol 27, No 3: Fall 2006; 75
The decision-making process of computer-controlled opponents in video games is called game AI. Adaptive game AI can improve the entertainment value of games by allowing computer-controlled opponents to ix weaknesses automatically in the game AI and t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=issn07384602::a19e60383c13cb0f95ebc56137b1bff2
http://aaai.org/ojs/index.php/aimagazine/article/view/1894
http://aaai.org/ojs/index.php/aimagazine/article/view/1894
Publikováno v:
Adaptive & Learning Agents; 2010, p1-32, 32p