Zobrazeno 1 - 10
of 1 093
pro vyhledávání: '"Ponce, G."'
We study the initial value problem (IVP) associated to the semi-linear fractional Sch\"odinger equation with variable coefficients. We deduce several properties of the anisotropic fractional elliptic operator modelling the dispersion relation and use
Externí odkaz:
http://arxiv.org/abs/2411.01300
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We give a new proof of the $L^2$ version of Hardy's uncertainty principle based on calculus and on its dynamical version for the heat equation. The reasonings rely on new log-convexity properties and the derivation of optimal Gaussian decay bounds fo
Externí odkaz:
http://arxiv.org/abs/1506.05670
Publikováno v:
iForest - Biogeosciences and Forestry, Vol 14, Iss 1, Pp 155-165 (2021)
The use of wood ash as a soil amendment in afforestation and reforestation efforts is increasing. While most studies suggest benefits or neutral results on tree growth and survival, a few studies indicate adverse effects. Hybrid larch, jack pine and
Externí odkaz:
https://doaj.org/article/90d4f6ae77fe4d6088184680a8287543
Publikováno v:
In Journal of Functional Analysis 15 March 2020 278(5)
In this work we derive a point-wise formula that will allows us to study the well-posedness of initial value problem associated to nonlinear dispersive equations in fractional weighted Sobolev spaces $H^s(\R)\cap L^2(|x|^{2r}dx)$, $s, r \in \R$. As a
Externí odkaz:
http://arxiv.org/abs/1405.7909
Publikováno v:
In Journal of Differential Equations 15 June 2019 267(1):97-118
We prove that if a solution of an equation of KdV type is bounded above by a traveling wave with an amplitude that decays faster than a given linear exponential then it must be zero. We assume no restrictions neither on the size nor in the direction
Externí odkaz:
http://arxiv.org/abs/1112.3505
We prove unique continuation properties for solutions of the evolution Schr\"odinger equation with time dependent potentials. As an application of our method we also obtain results concerning the possible concentration profiles of blow up solutions a
Externí odkaz:
http://arxiv.org/abs/1010.1906