Zobrazeno 1 - 10
of 85
pro vyhledávání: '"Pommersheim, James"'
Autor:
Abrams, Aaron, Pommersheim, James
To any combinatorial triangulation $T$ of a square, there is an associated polynomial relation $p_T$ among the areas of the triangles of $T$. With the goal of understanding this polynomial, we consider polynomials obtained from $p_T$ by choosing $l$
Externí odkaz:
http://arxiv.org/abs/2105.00563
Autor:
Fischer, Benjamin, Pommersheim, James
This paper presents an algebraic construction of Euler-Maclaurin formulas for polytopes. The formulas obtained generalize and unite the previous lattice point formulas of Morelli and Pommersheim-Thomas, and the Euler-Maclaurin formulas of Berline-Ver
Externí odkaz:
http://arxiv.org/abs/2101.04845
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
The rate of convergence of simple random walk on the Heisenberg group over $Z/nZ$ with a standard generating set was determined by Bump et al [1,2]. We extend this result to random walks on the same groups with an arbitrary minimal symmetric generati
Externí odkaz:
http://arxiv.org/abs/1607.05716
Given a unitary representation of a finite group on a finite-dimensional Hilbert space, we show how to find a state whose translates under the group are distinguishable with the highest probability. We apply this to several quantum oracle problems, i
Externí odkaz:
http://arxiv.org/abs/1503.05548
In this paper, we define an action of the group of equivariant Cartier divisors on a toric variety X on the equivariant cycle groups of X, arising naturally from a choice of complement map on the underlying lattice. If X is nonsingular, this gives a
Externí odkaz:
http://arxiv.org/abs/1407.7168
Families of symmetric simple random walks on Cayley graphs of Abelian groups with a bound on the number of generators are shown to never have sharp cut off in the sense of [1], [3], or [5]. Here convergence to the stationary distribution is measured
Externí odkaz:
http://arxiv.org/abs/1208.5235
We prove a central limit theorem for the length of the longest subsequence of a random permutation which follows one of a class of repeating patterns. This class includes every fixed pattern of ups and downs having at least one of each, such as the a
Externí odkaz:
http://arxiv.org/abs/1204.2872
Autor:
Meyer, David A., Pommersheim, James
PARITY is the problem of determining the parity of a string $f$ of $n$ bits given access to an oracle that responds to a query $x\in\{0,1,...,n-1\}$ with the $x^{\rm th}$ bit of the string, $f(x)$. Classically, $n$ queries are required to succeed wit
Externí odkaz:
http://arxiv.org/abs/1107.1940
Autor:
Meyer, David A., Pommersheim, James
Given a prior probability distribution over a set of possible oracle functions, we define a number of queries to be useless for determining some property of the function if the probability that the function has the property is unchanged after the ora
Externí odkaz:
http://arxiv.org/abs/1004.1434