Zobrazeno 1 - 10
of 324
pro vyhledávání: '"Polysomnography/methods"'
Autor:
Renee K. Jones, O.H. Rundell
Publikováno v:
Otolaryngologic Clinics of North America. 23:583-592
As the field of sleep disorders medicine continues to mature, appropriate diagnostic techniques are becoming properly defined and standardized. This article focuses principally upon diagnostic testing for sleep apnea, although other sleep disorders a
Autor:
Medina, Elizabeth1,2 (AUTHOR), Rempe, Michael J.1 (AUTHOR), Muheim, Christine1 (AUTHOR), Schoch, Hannah1 (AUTHOR), Singletary, Kristan1 (AUTHOR), Ford, Kaitlyn1 (AUTHOR), Peixoto, Lucia1 (AUTHOR) lucia.peixoto@wsu.edu
Publikováno v:
Biology of Sex Differences. 10/28/2024, Vol. 15 Issue 1, p1-11. 11p.
Autor:
Rundell OH; Department of Clinical Physiology, Presbyterian Hospital, Oklahoma City, Oklahoma., Jones RK
Publikováno v:
Otolaryngologic clinics of North America [Otolaryngol Clin North Am] 1990 Aug; Vol. 23 (4), pp. 583-92.
Autor:
O H, Rundell, R K, Jones
Publikováno v:
Otolaryngologic clinics of North America. 23(4)
As the field of sleep disorders medicine continues to mature, appropriate diagnostic techniques are becoming properly defined and standardized. This article focuses principally upon diagnostic testing for sleep apnea, although other sleep disorders a
Autor:
Luca Cerina, Gabriele B Papini, Pedro Fonseca, Sebastiaan Overeem, Johannes P van Dijk, Rik Vullings
Publikováno v:
Physiological Measurement, 44(3):035002. Institute of Physics
Objective. The accurate detection of respiratory effort during polysomnography is a critical element in the diagnosis of sleep-disordered breathing conditions such as sleep apnea. Unfortunately, the sensors currently used to estimate respiratory effo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::94b6c8aff4fdb9a45a7f9f5bad99ef16
https://research.tue.nl/nl/publications/1bfb2aac-d4d4-465b-b279-eb69613b64fd
https://research.tue.nl/nl/publications/1bfb2aac-d4d4-465b-b279-eb69613b64fd
Autor:
Iris A M Huijben, Lieke W A Hermans, Alessandro C Rossi, Sebastiaan Overeem, Merel M van Gilst, Ruud J G van Sloun
Publikováno v:
Physiological Measurement, 44(1):015002. Institute of Physics
Objective. The recently-introduced hypnodensity graph provides a probability distribution over sleep stages per data window (i.e. an epoch). This work explored whether this representation reveals continuities that can only be attributed to intra- and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::38bda3cd462991f09c7f9a4617bf7edf
https://research.tue.nl/nl/publications/6ca389f3-ab28-418a-ab50-051348282c5e
https://research.tue.nl/nl/publications/6ca389f3-ab28-418a-ab50-051348282c5e
Autor:
DelRosso, Lourdes M., Artinian, Hovig, Mogavero, Maria P., Bruni, Oliviero, Witmans, Manisha, Tablizo, Mary Anne, Sobremonte-King, Michelle, Ferri, Raffaele
Publikováno v:
Children; Jun2024, Vol. 11 Issue 6, p658, 9p
Autor:
Sambale, J., Koehler, U., Conradt, R., Kesper, K., Cassel, W., Degerli, M., Viniol, C., Korbmacher-Steiner, H. M.
Publikováno v:
BMC Oral Health; 5/14/2024, Vol. 24 Issue 1, p1-11, 11p
Autor:
Ribeiro, S, Bonito, L, Guimarães, MJ, Português, J, Rodrigues, B, Alves, A, Durães, C, Ferreira, D, Sanfins, V, Lourenço, A
Introduction: Sleep Apnea Syndrome (SAS) is a prevalent respiratory disease with marked expression in the population with cardiovascular disease. The diagnosis is based on polysomnography. In patients with cardiac implantable electronic devices (CIED
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2340::7302a5f7ae98957f2c155cb20c66721f
https://hdl.handle.net/10400.17/4223
https://hdl.handle.net/10400.17/4223
Publikováno v:
International Journal of Environmental Research and Public Health
Volume 16
Issue 4
International Journal of Environmental Research and Public Health, Vol 16, Iss 4, p 599 (2019)
Yildirim, O, Baloglu, U B & Acharya, U R 2019, ' A deep learning model for automated sleep stages classification using PSG signals ', International Journal of Environmental Research and Public Health, vol. 16, no. 4, 599 . https://doi.org/10.3390/ijerph16040599
Volume 16
Issue 4
International Journal of Environmental Research and Public Health, Vol 16, Iss 4, p 599 (2019)
Yildirim, O, Baloglu, U B & Acharya, U R 2019, ' A deep learning model for automated sleep stages classification using PSG signals ', International Journal of Environmental Research and Public Health, vol. 16, no. 4, 599 . https://doi.org/10.3390/ijerph16040599
Sleep disorder is a symptom of many neurological diseases that may significantly affect the quality of daily life. Traditional methods are time-consuming and involve the manual scoring of polysomnogram (PSG) signals obtained in a laboratory environme