Zobrazeno 1 - 10
of 155
pro vyhledávání: '"Polo, Francisco J."'
Publikováno v:
Proceedings of the American Mathematical Society 140 (9), 3179-3191 (2012)
Let $T:E\rightarrow F$ be a non-necessarily continuous triple homomorphism from a (complex) JB$^*$-triple (respectively, a (real) J$^*$B-triple) to a normed Jordan triple. The following statements hold: (1) $T$ has closed range whenever $T$ is contin
Externí odkaz:
http://arxiv.org/abs/2402.00538
We introduce the Jordan-strict topology on the multipliers algebra of a JB$^*$-algebra, a notion which was missing despite the fourty years passed after the first studies on Jordan multipliers. In case that a C$^*$-algebra $A$ is regarded as a JB$^*$
Externí odkaz:
http://arxiv.org/abs/2210.13353
Autor:
Fernández-Polo, Francisco J.
We prove a minimax principle for weakly compact JB$^*$-triples characterizing geometrically the singular values of an element. Among the consequences of this principle we present a Weyl inequality on the perturbation of the singular values and a Cauc
Externí odkaz:
http://arxiv.org/abs/1909.10226
Autor:
Becerra-Guerrero, Julio, Cueto-Avellaneda, María, Fernández-Polo, Francisco J., Peralta, Antonio M.
We prove that every JBW$^*$-triple $M$ with rank one or rank bigger than or equal to three satisfies the Mazur--Ulam property, that is, every surjective isometry from the unit sphere of $M$ onto the unit sphere of another Banach space $Y$ extends to
Externí odkaz:
http://arxiv.org/abs/1808.01460
Let $H$ and $H'$ be a complex Hilbert spaces. For $p\in(1, \infty)\backslash\{2\}$ we consider the Banach space $C_p(H)$ of all $p$-Schatten von Neumann operators, whose unit sphere is denoted by $S(C_p(H))$. We prove that every surjective isometry $
Externí odkaz:
http://arxiv.org/abs/1803.00763
Publikováno v:
In Insurance Mathematics and Economics July 2022 105:128-143
We prove that every surjective isometry between the unit spheres of two von Neumann algebras admits a unique extension to a surjective real linear isometry between these two algebras.
Externí odkaz:
http://arxiv.org/abs/1709.08529
We prove that every surjective isometry between the unit spheres of two trace class spaces admits a unique extension to a surjective complex linear or conjugate linear isometry between the spaces. This provides a positive solution to Tingley's proble
Externí odkaz:
http://arxiv.org/abs/1702.07182
We prove that every surjective isometry between the unit spheres of two atomic JBW$^*$-triples $E$ and $B$ admits a unit extension to a surjective real linear isometry from $E$ into $B$. This result constitutes a new positive answer to Tignley's prob
Externí odkaz:
http://arxiv.org/abs/1701.05112
Given two complex Hilbert spaces $H$ and $K$, let $S(B(H))$ and $S(B(K))$ denote the unit spheres of the C$^*$-algebras $B(H)$ and $B(K)$ of all bounded linear operators on $H$ and $K$, respectively. We prove that every surjective isometry $f: S(B(K)
Externí odkaz:
http://arxiv.org/abs/1701.02916