Zobrazeno 1 - 10
of 23 585
pro vyhledávání: '"Point at infinity"'
Autor:
Zorii, Natalia
First introduced by J. Deny, the classical principle of positivity of mass states that if $\kappa_\alpha\mu\leqslant\kappa_\alpha\nu$ everywhere on $\mathbb{R}^n$, then $\mu(\mathbb{R}^n)\leqslant\nu(\mathbb{R}^n)$. Here $\mu,\nu$ are positive Radon
Externí odkaz:
http://arxiv.org/abs/2202.12418
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Shimomura, Shun
Publikováno v:
SIGMA 14 (2018), 113, 50 pages
For the Schlesinger-type equation related to the fifth Painlev\'e equation (V) via isomonodromy deformation, we present a three-parameter family of matrix solutions along the imaginary axis near the point at infinity, and also the corresponding monod
Externí odkaz:
http://arxiv.org/abs/1804.10369
Autor:
Saitoh, Saburou
From the viewpoints of the division by zero $1/0=0/0=z/0=0$ and the division by zero calculus, we will examine the mysterious properties of the point at infinity in the sense of the Alexandroff one compactification of the complex plane which is reali
Externí odkaz:
http://arxiv.org/abs/1712.09467
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Dieuleveut, Daphné
We consider the uniform infinite quadrangulation of the plane (UIPQ). Curien, M\'enard and Miermont recently established that in the UIPQ, all infinite geodesic rays originating from the root are essentially similar, in the sense that they have an in
Externí odkaz:
http://arxiv.org/abs/1511.06886
Autor:
A. I. Ismail
Publikováno v:
Scientific Reports, Vol 11, Iss 1, Pp 1-7 (2021)
Abstract In this paper, a pendulum model is represented by a mechanical system that consists of a simple pendulum suspended on a spring, which is permitted oscillations in a plane. The point of suspension moves in a circular path of the radius (a) wh
Externí odkaz:
https://doaj.org/article/7eac42022c0643aba541d224b9f2038f
Autor:
Hiller, Josh johiller@adelphi.edu
Publikováno v:
Journal of Humanistic Mathematics. Jan2024, Vol. 14 Issue 1, p336-336. 1p.
Autor:
Ismail, A. I.1,2 aiismail@uqu.edu.sa
Publikováno v:
Scientific Reports. 6/24/2021, Vol. 11 Issue 1, p1-7. 7p.
Autor:
Tanimoto, Yoh
Publikováno v:
Internat. J. Math., Vol. 21, No. 10 (2010), 1297-1335
The group Diff(S^1) of the orientation preserving diffeomorphisms of the circle S^1 plays an important role in conformal field theory. We consider a subgroup B_0 of Diff(S^1) whose elements stabilize "the point of infinity". This subgroup is of inter
Externí odkaz:
http://arxiv.org/abs/0905.0875