Zobrazeno 1 - 10
of 206
pro vyhledávání: '"Poincaré-Dulac normal form"'
Autor:
Cresson, Jacky, Raissy, Jasmin
We study two particular continuous prenormal forms as defined by Jean Ecalle and Bruno Vallet for local analytic diffeomorphism: the Trimmed form and the Poincare-Dulac normal form. We first give a self-contain introduction to the mould formalism of
Externí odkaz:
http://arxiv.org/abs/math/0605716
Autor:
Zung, Nguyen Tien
We show that, to find a Poincare-Dulac normalization for a vector field is the same as to find and linearize a torus action which preserves the vector field. Using this toric characterization and other geometrical arguments, we prove that any local a
Externí odkaz:
http://arxiv.org/abs/math/0105193
Publikováno v:
In Journal of Functional Analysis 2011 260(10):3007-3035
Autor:
Guo, Zihua zihuaguo@math.pku.edu.cn, Kwon, Soonsik1 soonsikk@kaist.edu, Oh, Tadahiro2 hirooh@math.princeton.edu
Publikováno v:
Communications in Mathematical Physics. Aug2013, Vol. 322 Issue 1, p19-48. 30p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Functional Analysis. 260(10):3007-3035
We study the incompressible Navier–Stokes equations with potential body forces on the three-dimensional torus. We show that the normalization introduced in the paper [C. Foias, J.-C. Saut, Linearization and normal form of the Navier–Stokes equati
Autor:
Henryk Żołądek
Publikováno v:
Communications in Analysis and Mechanics, Vol 15, Iss 2, Pp 300-341 (2023)
We present an approach to Lyapunov theorems about a center for germs of analytic vector fields based on the Poincaré–Dulac and Birkhoff normal forms. Besides new proofs of three Lyapunov theorems, we prove their generalization: if the Poincaré–
Externí odkaz:
https://doaj.org/article/3500fc9accf145f685eadcc190bb7df2
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Guo, Z, Kwon, S & Oh, T 2013, ' Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS ', Communications in Mathematical Physics, vol. 322, no. 1, pp. 19-48 . https://doi.org/10.1007/s00220-013-1755-5
We implement an infinite iteration scheme of Poincare-Dulac normal form reductions to establish an energy estimate on the one-dimensional cubic nonlinear Schrodinger equation (NLS) in \({C_tL^2(\mathbb{T})}\), without using any auxiliary function spa
Autor:
Cresson, J., Jasmin Raissy
Publikováno v:
Bollettino dell'Unione Matematica Italiana
Bollettino dell'Unione Matematica Italiana, Springer Verlag, 2011, 27.p
Scopus-Elsevier
Bollettino dell'Unione Matematica Italiana, Springer Verlag, 2011, 27.p
Scopus-Elsevier
We study two particular continuous prenormal forms as defined by Jean Ecalle and Bruno Vallet for local analytic diffeomorphism: the Trimmed form and the Poincare-Dulac normal form. We first give a self-contain introduction to the mould formalism of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d267c6483496576a54b69f5da4e43bbe
https://hal.archives-ouvertes.fr/hal-00868048
https://hal.archives-ouvertes.fr/hal-00868048