Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Pohl, Anke D."'
Autor:
Pohl, Anke D.
Using Hecke triangle surfaces of finite and infinite area as examples, we present techniques for thermodynamic formalism approaches to Selberg zeta functions with unitary finite-dimensional representations $(V,\chi)$ for hyperbolic surfaces (orbifold
Externí odkaz:
http://arxiv.org/abs/1503.00525
Autor:
Pohl, Anke D.
We provide an explicit construction of a cross section for the geodesic flow on infinite-area Hecke triangle surfaces which allows us to conduct a transfer operator approach to the Selberg zeta function. Further we construct closely related cross sec
Externí odkaz:
http://arxiv.org/abs/1404.3934
Autor:
Pohl, Anke D.
Publikováno v:
Ergod. Th. Dynam. Sys. 36 (2014) 142-172
By a transfer operator approach to Maass cusp forms and the Selberg zeta function for cofinite Hecke triangle groups, M. M\"oller and the author found a factorization of the Selberg zeta function into a product of Fredholm determinants of transfer-op
Externí odkaz:
http://arxiv.org/abs/1303.0528
Autor:
Kadyrov, Shirali, Pohl, Anke D.
Recently, Einsiedler and the authors provided a bound in terms of escape of mass for the amount by which upper-semicontinuity for metric entropy fails for diagonal flows on homogeneous spaces $\Gamma\backslash G$, where $G$ is any connected semisimpl
Externí odkaz:
http://arxiv.org/abs/1211.3019
Autor:
Pohl, Anke D.
For nonuniform cofinite Fuchsian groups $\Gamma$ which satisfy a certain additional geometric condition, we show that the Maass cusp forms for $\Gamma$ are isomorphic to 1-eigenfunctions of a finite-term transfer operator. The isomorphism is construc
Externí odkaz:
http://arxiv.org/abs/1208.6178
Autor:
Pohl, Anke D.
We characterize the Maass cusp forms for Hecke congruence subgroups of prime level as 1-eigenfunctions of a finite-term transfer operator.
Comment: 17 pages, 6 figures
Comment: 17 pages, 6 figures
Externí odkaz:
http://arxiv.org/abs/1203.5510
Autor:
Pohl, Anke D.
We construct cross sections for the geodesic flow on the orbifolds $\Gamma\backslash H$ which are tailor-made for the requirements of transfer operator approaches to Maass cusp forms and Selberg zeta functions. Here, $H$ denotes the hyperbolic plane
Externí odkaz:
http://arxiv.org/abs/1008.0367
Autor:
Pohl, Anke D.
It is well-known that reduced smooth orbifolds and proper effective foliation Lie groupoids form equivalent categories. However, for certain recent lines of research, equivalence of categories is not sufficient. We propose a notion of maps between re
Externí odkaz:
http://arxiv.org/abs/1001.0668
Autor:
Pohl, Anke D.
We show the existence of isometric (or Ford) fundamental regions for a large class of subgroups of the isometry group of any rank one Riemannian symmetric space of noncompact type. The proof does not use the classification of symmetric spaces. All hi
Externí odkaz:
http://arxiv.org/abs/0908.4203
Autor:
Pohl, Anke D.
Publikováno v:
kostenfrei.
Paderborn, Univ., Diss., 2009