Zobrazeno 1 - 10
of 2 850
pro vyhledávání: '"Pohl, A. D."'
Autor:
Pohl, Anke D.
Using Hecke triangle surfaces of finite and infinite area as examples, we present techniques for thermodynamic formalism approaches to Selberg zeta functions with unitary finite-dimensional representations $(V,\chi)$ for hyperbolic surfaces (orbifold
Externí odkaz:
http://arxiv.org/abs/1503.00525
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Pohl, Anke D.
We provide an explicit construction of a cross section for the geodesic flow on infinite-area Hecke triangle surfaces which allows us to conduct a transfer operator approach to the Selberg zeta function. Further we construct closely related cross sec
Externí odkaz:
http://arxiv.org/abs/1404.3934
Autor:
Pohl, Anke D.
Publikováno v:
Ergod. Th. Dynam. Sys. 36 (2014) 142-172
By a transfer operator approach to Maass cusp forms and the Selberg zeta function for cofinite Hecke triangle groups, M. M\"oller and the author found a factorization of the Selberg zeta function into a product of Fredholm determinants of transfer-op
Externí odkaz:
http://arxiv.org/abs/1303.0528
Autor:
Kadyrov, Shirali, Pohl, Anke D.
Recently, Einsiedler and the authors provided a bound in terms of escape of mass for the amount by which upper-semicontinuity for metric entropy fails for diagonal flows on homogeneous spaces $\Gamma\backslash G$, where $G$ is any connected semisimpl
Externí odkaz:
http://arxiv.org/abs/1211.3019
Autor:
Pohl, Anke D.
For nonuniform cofinite Fuchsian groups $\Gamma$ which satisfy a certain additional geometric condition, we show that the Maass cusp forms for $\Gamma$ are isomorphic to 1-eigenfunctions of a finite-term transfer operator. The isomorphism is construc
Externí odkaz:
http://arxiv.org/abs/1208.6178
Autor:
Pohl, Anke D.
We characterize the Maass cusp forms for Hecke congruence subgroups of prime level as 1-eigenfunctions of a finite-term transfer operator.
Comment: 17 pages, 6 figures
Comment: 17 pages, 6 figures
Externí odkaz:
http://arxiv.org/abs/1203.5510
Autor:
Möller, M., Pohl, A. D.
We characterize Maass cusp forms for any cofinite Hecke triangle group as 1-eigenfunctions of appropriate regularity of a transfer operator family. This transfer operator family is associated to a certain symbolic dynamics for the geodesic flow on th
Externí odkaz:
http://arxiv.org/abs/1103.5235
Autor:
Pohl, Anke D.
We construct cross sections for the geodesic flow on the orbifolds $\Gamma\backslash H$ which are tailor-made for the requirements of transfer operator approaches to Maass cusp forms and Selberg zeta functions. Here, $H$ denotes the hyperbolic plane
Externí odkaz:
http://arxiv.org/abs/1008.0367
Autor:
Pohl, Anke D.
It is well-known that reduced smooth orbifolds and proper effective foliation Lie groupoids form equivalent categories. However, for certain recent lines of research, equivalence of categories is not sufficient. We propose a notion of maps between re
Externí odkaz:
http://arxiv.org/abs/1001.0668