Zobrazeno 1 - 10
of 47
pro vyhledávání: '"Pohjola, Valter"'
Autor:
Eberle-Blick, Sarah, Pohjola, Valter
We derive a linearized version of the monotonicity method for shape reconstruction using time harmonic elastic waves. The linearized method provides an efficient version of the method, drastically reducing computation time. Here we show that the line
Externí odkaz:
http://arxiv.org/abs/2409.20339
Autor:
Eberle-Blick, Sarah, Pohjola, Valter
We consider the problem of reconstructing inhomogeneities in an isotropic elastic body using time harmonic waves. Here we extend the so called monotonicity method for inclusion detection and show how to determine certain types of inhomogeneities in t
Externí odkaz:
http://arxiv.org/abs/2309.08376
Autor:
Blåsten, Emilia, Pohjola, Valter
We investigate fixed energy scattering from conical potentials having an irregular cross-section. The incident wave can be any arbitrary non-trivial Herglotz wave. We show that a large number of such local conical scatterers scatter all incident wave
Externí odkaz:
http://arxiv.org/abs/2110.06044
Autor:
Pohjola, Valter
Here we derive some results on so called quantitative Runge approximation in the case of the time-harmonic Maxwell equations. This provides a Runge approximation having more explicit quantitative information. We additionally derive some results on th
Externí odkaz:
http://arxiv.org/abs/2105.15058
Publikováno v:
SIAM J. Math. Anal. 51 (4), 2995-3019, 2019
The article [HPS] established a monotonicity inequality for the Helmholtz equation and presented applications to shape detection and local uniqueness in inverse boundary problems. The monotonicity inequality states that if two scattering coefficients
Externí odkaz:
http://arxiv.org/abs/1901.08495
Publikováno v:
Analysis & PDE 12 (2019) 1495-1525
This work extends monotonicity-based methods in inverse problems to the case of the Helmholtz (or stationary Schr\"odinger) equation $(\Delta + k^2 q) u = 0$ in a bounded domain for fixed non-resonance frequency $k>0$ and real-valued scattering coeff
Externí odkaz:
http://arxiv.org/abs/1709.08756
Autor:
Pohjola, Valter
We prove that the Dirichlet eigenvalues and Neumann boundary data of the corresponding eigenfunctions of the operator $-\Delta + q$, determine the potential $q$, when $q \in L^{n/2}(\Omega,\mathbb{R})$ and $n \geq 3$. We also consider the case of inc
Externí odkaz:
http://arxiv.org/abs/1612.02937
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Pohjola, Valter, Tzou, Leo
We prove a fixed frequency inverse scattering result for the magnetic Schr\"odinger operator (or connection Laplacian) on surfaces with Euclidean ends. We show that, under suitable decaying conditions, the scattering matrix for the operator determine
Externí odkaz:
http://arxiv.org/abs/1603.02402
Autor:
Pohjola, Valter
We consider the inverse boundary value problem for the steady state convection diffusion equation. We prove that a velocity field $V$, is uniquely determined by the Dirichlet-to-Neumann map, when $V \in C^{0,\gamma} (\Omega)$, $2/3< \gamma \leq 1$, i
Externí odkaz:
http://arxiv.org/abs/1405.6864