Zobrazeno 1 - 10
of 302
pro vyhledávání: '"Podolskiy, Viktor A."'
Autor:
Li, Wenhao, LaMountain, Jacob, Simmons, Evan, Clabeau, Anthony, Bekele, Robel Y., Myers, Jason D., Omatsu, Takashige, Frantz, Jesse, Podolskiy, Viktor A., Litchinitser, Natalia M.
The synergy of judiciously engineered nanostructures and complex topology of light creates unprecedented opportunities for tailoring light-matter interactions on the nanoscale. Electromagnetic waves can carry multiple units of angular momentum per ph
Externí odkaz:
http://arxiv.org/abs/2406.05016
Autor:
Srivastava, Sangeeta, Olin, Samuel, Podolskiy, Viktor, Karpatne, Anuj, Lee, Wei-Cheng, Arora, Anish
Given their ability to effectively learn non-linear mappings and perform fast inference, deep neural networks (NNs) have been proposed as a viable alternative to traditional simulation-driven approaches for solving high-dimensional eigenvalue equatio
Externí odkaz:
http://arxiv.org/abs/2202.05994
Autor:
Ghosh, Abantika, Elhamod, Mohannad, Bu, Jie, Lee, Wei-Cheng, Karpatne, Anuj, Podolskiy, Viktor A
We demonstrate that embedding physics-driven constraints into machine learning process can dramatically improve accuracy and generalizability of the resulting model. Physics-informed learning is illustrated on the example of analysis of optical modes
Externí odkaz:
http://arxiv.org/abs/2112.07625
Autor:
Elhamod, Mohannad, Bu, Jie, Singh, Christopher, Redell, Matthew, Ghosh, Abantika, Podolskiy, Viktor, Lee, Wei-Cheng, Karpatne, Anuj
Physics-guided Neural Networks (PGNNs) represent an emerging class of neural networks that are trained using physics-guided (PG) loss functions (capturing violations in network outputs with known physics), along with the supervision contained in data
Externí odkaz:
http://arxiv.org/abs/2007.01420
Autor:
Ghosh, Abantika, Roth, Diane J., Nicholls, Luke H., Wardley, William P., Zayats, Anatoly V., Podolskiy, Viktor A.
Far-field characterization of small objects is severely constrained by the diffraction limit. Existing tools achieving sub-diffraction resolution often utilize point-by-point image reconstruction via scanning or labelling. Here, we present a new imag
Externí odkaz:
http://arxiv.org/abs/2005.03595
Autor:
Briggs, Andrew F., Nordin, Leland, Muhowski, Aaron J., Simmons, Evan, Dhingra, Pankul, Lee, Minjoo L., Podolskiy, Viktor A., Wasserman, Daniel, Bank, Seth R.
Remarkable systems have been reported recently using the polylithic integration of semiconductor optoelectronic devices and plasmonic materials exhibiting epsilon-near-zero (ENZ) and negative permittivity. In traditional noble metals, the ENZ and pla
Externí odkaz:
http://arxiv.org/abs/2005.03163
Autor:
Li, Kun, Simmons, Evan, Briggs, A. F., Bank, S. R., Wasserman, Daniel, Podolskiy, Viktor A., Narimanov, Evgenii E.
The interaction of free electrons with electromagnetic excitation is the fundamental mechanism responsible for ultra-strong confinement of light that, in turn, enables biosensing, near-field microscopy, optical cloaking, sub-wavelength focusing, and
Externí odkaz:
http://arxiv.org/abs/1912.09434
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Pixel size in cameras and other refractive imaging devices is typically limited by the free-space diffraction. However, a vast majority of semiconductor-based detectors are based on materials with substantially high refractive index. We demonstrate t
Externí odkaz:
http://arxiv.org/abs/1803.09843