Zobrazeno 1 - 10
of 124
pro vyhledávání: '"Podestà, Fabio"'
Autor:
Podestà, Fabio, Raffero, Alberto
We prove the existence of a one-parameter family of pairwise non-isometric, complete, positively curved, steady generalized Ricci solitons of gradient type on $\mathbb{R}^3$ that are invariant under the natural cohomogeneity one action of SO(3). In t
Externí odkaz:
http://arxiv.org/abs/2401.05028
Autor:
Podestà, Fabio, Zheng, Fangyang
In this article, we investigate the class of Hermitian manifolds whose Bismut connection has parallel torsion ({\rm BTP} for brevity). In particular, we focus on the case where the manifold is (locally) homogeneous with respect to a group of holomorp
Externí odkaz:
http://arxiv.org/abs/2310.14002
Autor:
Podestà, Fabio, Raffero, Alberto
Publikováno v:
Communications in Contemporary Mathematics, 2022
Starting from compact symmetric spaces of inner type, we provide infinite families of compact homogeneous spaces carrying invariant non-flat Bismut connections with vanishing Ricci tensor. These examples turn out to be generalized symmetric spaces of
Externí odkaz:
http://arxiv.org/abs/2205.12690
Autor:
Podestà, Fabio, Raffero, Alberto
Publikováno v:
Proceedings of the Royal Society of Edinburgh. Section A: Mathematics, 2022
We construct examples of compact homogeneous Riemannian manifolds admitting an invariant Bismut connection that is Ricci flat and non-flat, proving in this way that the generalized Alekseevsky-Kimelfeld theorem does not hold. The classification of co
Externí odkaz:
http://arxiv.org/abs/2202.00417
Autor:
Giusti, Federico, Podestà, Fabio
Given any non-compact real simple Lie group G of inner type and even dimension, we prove the existence of an invariant complex structure J and a Hermitian balanced metric with vanishing Chern scalar curvature on G and on any compact quotient $M=G/\Ga
Externí odkaz:
http://arxiv.org/abs/2106.14557
Autor:
Podestà, Fabio, Raffero, Alberto
Publikováno v:
Asian Journal of Mathematics, 2021
We provide the complete classification of seven-dimensional manifolds endowed with a closed non-parallel G$_2$-structure and admitting a transitive reductive group G of automorphisms. In particular, we show that the center of G is one-dimensional and
Externí odkaz:
http://arxiv.org/abs/1911.13052
Autor:
Podestà, Fabio
We prove the existence of a one-parameter family of nearly parallel $G_2$-structures on the manifold $S^3\times \mathbb R^4$, which are mutually non isomorphic and invariant under the cohomogeneity one action of the group $SU(2)^3$. This family conne
Externí odkaz:
http://arxiv.org/abs/1905.03077
Autor:
Panelli, Francesco, Podestà, Fabio
We study a version of the Hermitian curvature flow on compact homogeneous complex manifolds. We prove that the solution has a finite exstinction time $T>0$ and we analyze its behaviour when $t\to T$. We also determine the invariant static metrics and
Externí odkaz:
http://arxiv.org/abs/1903.10273
Autor:
Alekseevsky, Dmitri V., Podestà, Fabio
Given a non compact semisimple Lie group $G$ we describe all homogeneous spaces $G/L$ carrying an invariant almost K\"ahler structure $(\omega,J)$. When $L$ is abelian and $G$ is of classical type, we classify all such spaces which are Chern-Einstein
Externí odkaz:
http://arxiv.org/abs/1811.04068
Autor:
Podestà, Fabio, Raffero, Alberto
We prove that the automorphism group of a compact 6-manifold $M$ endowed with a symplectic half-flat SU(3)-structure has abelian Lie algebra with dimension bounded by min$\{5,b_1(M)\}$. Moreover, we study the properties of the automorphism group acti
Externí odkaz:
http://arxiv.org/abs/1802.09412