Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Pliss, Iryna"'
Autor:
Izonin, Ivan, Tkachenko, Roman, Yemets, Kyrylo, Gregus, Michal, Tomashy, Yevhen, Pliss, Iryna
Publikováno v:
In Procedia Computer Science 2024 241:32-39
Autor:
Izonin, Ivan, Tkachenko, Roman, Yendyk, Pavlo, Pliss, Iryna, Bodyanskiy, Yevgeniy, Gregus, Michal
Publikováno v:
Computation; Oct2024, Vol. 12 Issue 10, p203, 15p
Publikováno v:
Information Technology and Management Science; Vol 18, No 1 (2015): Information Technology and Management Science; 70-77
In the paper, a new hybrid system of computational intelligence is proposed. This system combines the advantages of neuro-fuzzy system of Takagi-Sugeno-Kang, type-2 fuzzy logic, wavelet neural networks and generalised additive models of Hastie-Tibshi
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this paper neuro-fuzzy approach for medical data processing is considered. Special capacities for methods and systems of Computational Intelligence were introduced for Medical Data Mining tasks, like transparency and interpretability of obtained r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9d091331ac3d443d0fec94aa1636858f
A deep 2D-neural network and its learning algorithm are proposed. This system is based on the 2D analogue of the elementary Rosenblatt’s perceptron, the error backpropagation procedure, and the matrix analogue of the Kaczmarz–Widrow–Hoff algori
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1859::1669847bd06b0bdb1b138106076b2350
https://ena.lpnu.ua/handle/ntb/52436
https://ena.lpnu.ua/handle/ntb/52436
Autor:
Pliss, Iryna, Perova, Iryna
Publikováno v:
Automatic Control & Computer Sciences; Nov2017, Vol. 51 Issue 6, p391-398, 8p
Architecture and learning algorithm of self-learning spiking neural network in fuzzy clustering task are outlined. Fuzzy receptive neurons for pulse-position transformation of input data are considered. It is proposed to treat a spiking neural networ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1694::87bceb7520fe9898eb8245c6275cb6b9
https://hdl.handle.net/10525/1211
https://hdl.handle.net/10525/1211
In the paper new non-conventional growing neural network is proposed. It coincides with the Cascade- Correlation Learning Architecture structurally, but uses ortho-neurons as basic structure units, which can be adjusted using linear tuning procedures
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1694::ac33ffd99fa7dd700c7080bf2e869718
https://hdl.handle.net/10525/1025
https://hdl.handle.net/10525/1025
Publikováno v:
Green IT Engineering: Concepts, Models, Complex Systems Architectures; 2017, p229-244, 16p