Zobrazeno 1 - 10
of 47
pro vyhledávání: '"Plechko, V. N."'
Autor:
Plechko, V. N.
Publikováno v:
Phys.Part.Nucl.41:1054-1060,2010
The aspects of phase transitions in the two-dimensional Ising models modified by quenched and annealed site disorder are discussed in the framework of fermionic approach based on the reformulation of the problem in terms of integrals with anticommuti
Externí odkaz:
http://arxiv.org/abs/1008.4961
Autor:
Plechko, V. N.
Publikováno v:
Phys.Part.Nucl. 36 (2005) S203-S208
The anticommuting analysis with Grassmann variables is applied to the two-dimensional Ising model in statistical mechanics. The discussion includes the transformation of the partition function into a Gaussian fermionic integral, the momentum-space re
Externí odkaz:
http://arxiv.org/abs/hep-th/0512263
Autor:
Plechko, V. N.
Publikováno v:
Proceedings of XXIII International Colloquium on Group Theoretical Methods in Physics, July 31--Aug 5, 2000, Dubna, Russia. Edited by A.N.Sissakian, G.S.Pogosyan and L.G.Mardoyan, Vol.2, (JINR Publ., Dubna, 2002), p.557--562
The two-dimensional Ising model is representable as a lattice free-fermion field theory in terms of the integral over anticommuting Grassmann variables. The exact solution in a zero magnetic field then follows by evaluating Gaussian fermionic integra
Externí odkaz:
http://arxiv.org/abs/math-ph/0411084
Autor:
Plechko, V. N.
Publikováno v:
In ``Path Integrals from peV to TeV: 50 Years after Feynman's Paper'', Proceedings of the 6th International Conference on Path Integrals from peV to TeV, August 25--29, 1998, Florence, Italy. Edited by R.Casalbuoni, R.Giachetti, V.Tognetti, R.Vaia and P.Verrucchi (World Scientific, Singapore, 1999) p.137-141
The notion of the integral over the anticommuting Grassmann variables is applied to analyze the fermionic structure of the 2D Ising model with quenched site dilution. In the $N$-replica scheme, the model is explicitly reformulated as a theory of inte
Externí odkaz:
http://arxiv.org/abs/hep-th/9906107
Autor:
Plechko, V. N.
Publikováno v:
J. Phys. Studies, Vol.1, No.4 (1997) 554-563
We review some aspects of the fermionic interpretation of the two-dimensional Ising model. The use is made of the notion of the integral over the anticommuting Grassmann variables. For simple and more complicated 2D Ising lattices, the partition func
Externí odkaz:
http://arxiv.org/abs/cond-mat/9812434
Autor:
Plechko, V. N.
Publikováno v:
Phys. Lett. A 239 (1998) 289-299
We apply a new anticommuting path integral technique to clarify the fermionic structure of the 2D Ising model with quenched site dilution. In the $N$-replica scheme, the model is explicitly reformulated as a theory of interacting fermions on a lattic
Externí odkaz:
http://arxiv.org/abs/cond-mat/9711247
Autor:
Hayn, R., Plechko, V. N.
Publikováno v:
Yad. Fiz. 61 (1998) 2080-2084 [Phys.At.Nucl. 61 (1998) 1972-1977]
We discuss some aspects of a new noncombinatorial fermionic approach to the two-dimensional dimer problem in statistical mechanics based on the integration over anticommuting Grassmann variables and factorization ideas for dimer density matrix. The d
Externí odkaz:
http://arxiv.org/abs/cond-mat/9711156
Autor:
Plechko, V. N.
Publikováno v:
Proceedings PI-96 (JINR, Dubna, 1996) 295--299
The notion of the integral over the anticommuting Grassmann variables (nonquantum fermionic fields) seems to be the most powerful tool in order to extract the exact analytic solutions for the 2D Ising models on simple and more complicated lattices, w
Externí odkaz:
http://arxiv.org/abs/hep-th/9609044
Autor:
Plechko, V. N.
Publikováno v:
Proceedings ICSMP-95 (JINR, Dubna, 1996) Vol. 2, 443-450
We review the applications of the integral over anticommuting Grassmann variables (nonquantum fermionic fields) to the analytic solutions and the field-theoretical formulations for the 2D Ising models. The 2D Ising model partition function $Q$ is pre
Externí odkaz:
http://arxiv.org/abs/hep-th/9607053
Autor:
Bologyubov, N. N., Plechko, V. N.
Publikováno v:
Theoretical and Mathematical Physics; December 1985, Vol. 65 Issue: 3 p1255-1263, 9p