Zobrazeno 1 - 10
of 73
pro vyhledávání: '"Plávka, Ján"'
Chest radiography is a relatively cheap, widely available medical procedure that conveys key information for making diagnostic decisions. Chest X-rays are almost always used in the diagnosis of respiratory diseases such as pneumonia or the recent COV
Externí odkaz:
http://arxiv.org/abs/2103.03055
Autor:
Myšková, Helena, Plavka, Ján
Publikováno v:
In Linear Algebra and Its Applications 1 January 2024 680:28-44
Autor:
Myšková, Helena, Plavka, Ján
Publikováno v:
In Fuzzy Sets and Systems 15 July 2023 463
Autor:
Plavka, Jan, Sergeev, Sergei
Publikováno v:
Linear Algebra and its Applications 550 (2018) 59-86
A nonnegative matrix A is said to be strongly robust if its max-algebraic eigencone is universally reachable, i.e., if the orbit of any initial vector ends up with a max-algebraic eigenvector of A. Consider the case when the initial vector is restric
Externí odkaz:
http://arxiv.org/abs/1612.05040
Autor:
Plavka, Ján, Gazda, Matej
Publikováno v:
In Fuzzy Sets and Systems 1 May 2021 410:27-44
Autor:
Plavka, Jan, Sergeev, Sergei
Publikováno v:
Linear Algebra and its Applications 507 (2016) 169-190
We investigate max-algebraic (tropical) one-sided systems $A\otimes x=b$ where $b$ is an eigenvector and $x$ lies in an interval $X$. A matrix $A$ is said to have $X$-simple image eigencone associated with an eigenvalue $\lambda$, if any eigenvector
Externí odkaz:
http://arxiv.org/abs/1511.00877
Autor:
Myšková, Helena, Plavka, Ján
Publikováno v:
In Discrete Applied Mathematics 30 September 2020 284:8-19
Autor:
Myšková, Helena, Plavka, Ján
Publikováno v:
In Linear Algebra and Its Applications 1 April 2020 590:85-96
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Plavka, Jan, Sergeev, Sergei
Publikováno v:
Kybernetika 52:4 (2016) 497-513
A matrix $A$ is said to have $X$-simple image eigenspace if any eigenvector $x$ belonging to the interval $X=\{x\colon \underline{x}\leq x\leq\overline{x}\}$ is the unique solution of the system $A\otimes y=x$ in $X$. The main result of this paper is
Externí odkaz:
http://arxiv.org/abs/1401.3691