Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Pjotr Buys"'
Autor:
Pjotr Buys
Publikováno v:
The Michigan mathematical journal, 70(3), 635-648. University of Michigan
In [PR19], Peters and Regts confirmed a conjecture by Sokal [Sok01] by showing that for every Δ∈Z≥3, there exists a complex neighborhood of the interval [0,(Δ−1)Δ−1/(Δ−2) Δ) on which the independence polynomial is nonzero for all graph
Uniqueness of the Gibbs measure for the $4$-state anti-ferromagnetic Potts model on the regular tree
Publikováno v:
Combinatorics Probability and Computing, 32(1), 158-182. Cambridge University Press
We show that the $4$-state anti-ferromagnetic Potts model with interaction parameter $w\in(0,1)$ on the infinite $(d+1)$-regular tree has a unique Gibbs measure if $w\geq 1-\frac{4}{d+1}$ for all $d\geq 4$. This is tight since it is known that there
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a312f61d7b5ab3a4fedddabea94e627c
Publikováno v:
Ergodic theory and dynamical systems, 42(7), 2172-2206. Cambridge University Press
We investigate the location of zeros for the partition function of the anti-ferromagnetic Ising Model, focusing on the zeros lying on the unit circle. We give a precise characterization for the class of rooted Cayley trees, showing that the zeros are
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4aadb9efaaaa9d002a3b1e92f915ad00