Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Pizzato, Marco"'
Autor:
Mattarei, Sandro, Pizzato, Marco
Publikováno v:
Finite Fields Appl. Journal Profile 84, Article ID 102111, 22 p. (2022)
Let $R(x)=g(x)/h(x)$ be a rational expression of degree three over the finite field $\mathbb{F}_q$. We count the irreducible polynomials in $\mathbb{F}_q[x]$, of a given degree, which have the form $h(x)^{\mathrm{deg}\, f}\cdot f\bigl(R(x)\bigr)$ for
Externí odkaz:
http://arxiv.org/abs/2111.04166
Autor:
Mattarei, Sandro, Pizzato, Marco
We study and partially classify cubic rational expressions $g(x)/h(x)$ over a finite field $\mathbb{F}_q$, up to pre- and post-composition with independent M\"obius transformations. In particular, we obtain a full classification when $q$ is even, and
Externí odkaz:
http://arxiv.org/abs/2104.00111
Autor:
Mattarei, Sandro, Pizzato, Marco
Publikováno v:
In Finite Fields and Their Applications December 2022 84
Publikováno v:
Alg. Number Th. 11 (2017) 2369-2395
We show that Ambro-Kawamata's non-vanishing conjecture holds true for a quasi-smooth WCI X which is Fano or Calabi-Yau, i.e. we prove that, if H is an ample Cartier divisor on X, then |H| is not empty. If X is smooth, we further show that the general
Externí odkaz:
http://arxiv.org/abs/1703.07344
Autor:
Mattarei, Sandro, Pizzato, Marco
Publikováno v:
Finite Fields Appl. 48 (2017), 271-288
A formula for the number of monic irreducible self-reciprocal polynomials, of a given degree over a finite field, was given by Carlitz in 1967. In 2011 Ahmadi showed that Carlitz's formula extends, essentially without change, to a count of irreducibl
Externí odkaz:
http://arxiv.org/abs/1609.07677
Autor:
Pizzato, Marco
In this thesis we consider some problems concerning polynomials over finite fields. The first topic is the action of some groups on irreducible polynomials. We describe orbits and stabilizers. Next, we consider transformations of irreducible polynomi
Externí odkaz:
https://hdl.handle.net/11572/367913
Autor:
Pizzato, Marco
Starting from PN functions, we introduce the concept of $k$-PN functions and classify $k$-PN monomials over finite fields of order $p, p^2$ and $p^4$ for small values of $k$.
Comment: 14 pages
Comment: 14 pages
Externí odkaz:
http://arxiv.org/abs/1312.6839
Autor:
Mattarei, Sandro1 (AUTHOR) sandro.mattarei@unimib.it, Pizzato, Marco2 (AUTHOR) marco.pizzato1@gmail.com
Publikováno v:
Journal of Algebra & Its Applications. Jul2024, p1. 27p.
Autor:
Mattarei, Sandro, Pizzato, Marco
Publikováno v:
In Finite Fields and Their Applications November 2017 48:271-288
Autor:
Cappelletto, Fabio, Ceriali, Silvia, Pra, Stefania Dal, Dellai, Andrea, Fin, Valeria, Golfieri, Bruno, Iemma, Aaron, Iversen, Daniel, Michelucci, Angelo, Morati, Silvia, Morbioli, Marco, Muraro, Riccardo, Pizzato, Marco, Salmaso, Andrea, Chiodi, Luisa Sella, Stefani, Lorenzo, Stefani, Simone, De Fatis, Karol Tabarelli
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f53670c3c7310d399930648e22ad63b3