Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Piyawat Lertvittayakumjorn"'
Autor:
Thanapapas Horsuwan, Piyawat Lertvittayakumjorn, Kasidis Kanwatchara, Boonserm Kijsirikul, Peerapon Vateekul
Publikováno v:
IEEE Access, Vol 12, Pp 34099-34115 (2024)
Meta-learning has been applied to lifelong language learning due to its ability to find an optimal model for efficient adaptation to any learned tasks. Generally, meta lifelong-learning partially stores samples from seen tasks in a memory and selects
Externí odkaz:
https://doaj.org/article/289dbfd7474049c3983689a1b92778fa
Publikováno v:
IEEE Access, Vol 12, Pp 28310-28322 (2024)
Prompt-based learning has demonstrated remarkable success in few-shot text classification, outperforming the traditional fine-tuning approach. This method transforms a text input into a masked language modeling prompt using a template, queries a fine
Externí odkaz:
https://doaj.org/article/abc77bb1b5de4f0abf407074b72a0264
Publikováno v:
Argument & Computation, Pp 1-72 (2023)
Recent works in Explainable AI mostly address the transparency issue of black-box models or create explanations for any kind of models (i.e., they are model-agnostic), while leaving explanations of interpretable models largely underexplored. In this
Externí odkaz:
https://doaj.org/article/1221f831233c49d28451adb064d5533b
Publikováno v:
Transactions of the Association for Computational Linguistics, Vol 9, Pp 1508-1528 (2021)
AbstractDebugging a machine learning model is hard since the bug usually involves the training data and the learning process. This becomes even harder for an opaque deep learning model if we have no clue about how the model actually works. In this su
Externí odkaz:
https://doaj.org/article/514cb33eaea84bc3be5e36199fb70be6
Autor:
Kasidis Kanwatchara, Thanapapas Horsuwan, Piyawat Lertvittayakumjorn, Boonserm Kijsirikul, Peerapon Vateekul
Publikováno v:
Computational Linguistics, Vol 48, Iss 4 (2022)
To achieve lifelong language learning, pseudo-rehearsal methods leverage samples generated from a language model to refresh the knowledge of previously learned tasks. Without proper controls, however, these methods could fail to retain the knowledge
Externí odkaz:
https://doaj.org/article/144d323fe8a146849b81ca4f653a6e7a
Autor:
Joe Zhang, Stephen Whebell, Jack Gallifant, Sanjay Budhdeo, Heather Mattie, Piyawat Lertvittayakumjorn, Maria del Pilar Arias Lopez, Beatrice J Tiangco, Judy W Gichoya, Hutan Ashrafian, Leo A Celi, James T Teo
Publikováno v:
The Lancet: Digital Health, Vol 4, Iss 4, Pp e212-e213 (2022)
Externí odkaz:
https://doaj.org/article/f7fb625c778e43d1a2f68a9b67035590
Autor:
Chao Wu, Guolong Wang, Jiangcheng Zhu, Piyawat Lertvittayakumjorn, Simon Hu, Chilie Tan, Hong Mi, Yadan Xu, Jun Xiao
Publikováno v:
IEEE Access, Vol 7, Pp 21446-21453 (2019)
Exploratory analysis is an important way to gain understanding and find unknown relationships from various data sources, especially in the era of big data. Traditional paradigms of social science data analysis follow the steps of feature selection, m
Externí odkaz:
https://doaj.org/article/27b879b996c04d138f301945d6c38d6d
Autor:
Piyawat Lertvittayakumjorn, Ivan Petej, Anna van der Gaag, Juan Caceres Silva, Yang Gao, Yamuna Krishnamurthy, Ann Gallagher, Kostas Stathis, Zubin Austin, Robert Jago, Michelle Webster
Publikováno v:
Journal of Nursing Regulation. 12:11-19
This project aimed to develop an artificial intelligence (AI)–based tool for improving the consistency and efficiency of decision-making in the nursing complaints process in three jurisdictions. This article describes the tool and the overall proce
Publikováno v:
International Conference of the Italian Association for Artificial Intelligence
AIxIA 2021 – Advances in Artificial Intelligence ISBN: 9783031084201
AIxIA 2021 – Advances in Artificial Intelligence ISBN: 9783031084201
In recent years, there have been many attempts to combine XAI with the field of symbolic AI in order to generate explanations for neural networks that are more interpretable and better align with human reasoning, with one prominent candidate for this
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ac5dff067b36c2958cbc15f1fc4c0219
http://hdl.handle.net/10044/1/99449
http://hdl.handle.net/10044/1/99449
Autor:
Leo Anthony Celi, Beatrice Tiangco, Sanjay Budhdeo, Maria del Pilar Arias Lopez, Hutan Ashrafian, Piyawat Lertvittayakumjorn, Jack Gallifant, Stephen Whebell, Joe Zhang, Heather Mattie, James T. Teo, Judy Wawira Gichoya
Publikováno v:
Lancet Digit Health
The global clinical artificial intelligence (AI) research landscape is constantly evolving, with heterogeneity across specialties, disease areas, geographical representation, and development maturity. Continual assessment of this landscape is importa