Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Piotr Warchoł"'
Publikováno v:
Physics Letters B, Vol 753, Iss C, Pp 65-68 (2016)
We discuss a hydrodynamical description of the eigenvalues of the Polyakov line at large but finite Nc for Yang–Mills theory in even and odd space-time dimensions. The hydro-static solutions for the eigenvalue densities are shown to interpolate bet
Externí odkaz:
https://doaj.org/article/fc6f5138b52049378d6c663b99c91bff
Publikováno v:
Physics Letters B, Vol 753, Iss C, Pp 303-307 (2016)
We discuss a hydrodynamical description of the eigenvalues of the Dirac spectrum in even dimensions in the vacuum and in the large N (volume) limit. The linearized hydrodynamics supports sound waves. The hydrodynamical relaxation of the eigenvalues i
Externí odkaz:
https://doaj.org/article/fd52a0c133f4415fa8d574413bedc0bd
Publikováno v:
Nuclear Physics B, Vol 897, Iss C, Pp 421-447 (2015)
Following our recent letter [1], we study in detail an entry-wise diffusion of non-hermitian complex matrices. We obtain an exact partial differential equation (valid for any matrix size N and arbitrary initial conditions) for evolution of the averag
Externí odkaz:
https://doaj.org/article/56da00646ff84ac5a7c472c726e6a57d
Publikováno v:
Physics Letters B, Vol 753, Iss C, Pp 303-307 (2016)
Physics Letters B
Physics Letters B
We discuss a hydrodynamical description of the eigenvalues of the Dirac spectrum in even dimensions in the vacuum and in the large N (volume) limit. The linearized hydrodynamics supports sound waves. The hydrodynamical relaxation of the eigenvalues i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0669f317e5e985cbdf7518a26fbba148
http://ruj.uj.edu.pl/xmlui/handle/item/28514
http://ruj.uj.edu.pl/xmlui/handle/item/28514
We compare the Ornstein-Uhlenbeck process for the Gaussian Unitary Ensemble to its non-hermitian counterpart - for the complex Ginibre ensemble. We exploit the mathematical framework based on the generalized Green's functions, which involves a new, h
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a30f14f2f8f46c614aefea9aa978dcdc
http://arxiv.org/abs/1512.06599
http://arxiv.org/abs/1512.06599
Publikováno v:
Physical Review D. 92
We present a hydrodynamical description of the QCD Dirac spectrum at finite chemical potential as an uncompressible droplet in the complex eigenvalue space. For a large droplet, the fluctuation spectrum around the hydrostatic solution is gapped by a
Autor:
Jacek Grela, Piotr Warchoł
Publikováno v:
J.Phys.A
J.Phys.A, 2018, 51 (42), pp.425203. ⟨10.1088/1751-8121/aadd54⟩
J.Phys.A, 2018, 51 (42), pp.425203. ⟨10.1088/1751-8121/aadd54⟩
We find stochastic equations governing eigenvalues and eigenvectors of a dynamical complex Ginibre ensemble reaffirming the intertwined role played between both sets of matrix degrees of freedom. We solve the accompanying Smoluchowski-Fokker-Planck e
Autor:
Piotr Warchoł
Publikováno v:
Journal of Physics A: Mathematical and Theoretical. 51:265101
The public transportation system of Cuernavaca, Mexico, exhibits random matrix theory statistics [1]. In particular, the fluctuation of times between the arrival of buses on a given bus stop, follows the Wigner surmise for the Gaussian Unitary Ensemb
Publikováno v:
Nuclear Physics B
Nuclear Physics B, Vol 897, Iss C, Pp 421-447 (2015)
Nuclear Physics B, Vol 897, Iss C, Pp 421-447 (2015)
Following our recent letter, we study in detail an entry-wise diffusion of non-hermitian complex matrices. We obtain an exact partial differential equation (valid for any matrix size $N$ and arbitrary initial conditions) for evolution of the averaged
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::698e61690aaef89ab2f0b717c369fe29
http://www.openaccessrepository.it/record/12210
http://www.openaccessrepository.it/record/12210
Autor:
Artur Miroszewski, Sonia Wróbel, Marcin Krzykawski, Grzegorz Gazdowicz, Piotr Łątka, Jakub Kramarz, Paweł Pieczarko, Piotr Warchoł, Renata Szczelina, Jakub Mielczarek
3D bioprinting is an innovative method of manufacturing three-dimensional tissue-like structures. The method is based on a layer-by-layer deposition of biocompatible materials successively forming a scaffold for living cells. The technology allows to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::809a0789db82df2b2c42987596db09ad
http://ruj.uj.edu.pl/xmlui/handle/item/16951
http://ruj.uj.edu.pl/xmlui/handle/item/16951