Zobrazeno 1 - 10
of 63
pro vyhledávání: '"Piotr Kalita"'
Publikováno v:
Entropy, Vol 21, Iss 5, p 493 (2019)
Informational Structures (IS) and Informational Fields (IF) have been recently introduced to deal with a continuous dynamical systems-based approach to Integrated Information Theory (IIT). IS and IF contain all the geometrical and topological constra
Externí odkaz:
https://doaj.org/article/62e43904ff1146a4b85b2e6dc9e0a87b
Autor:
Piotr Zgliczyński, Piotr Kalita
Publikováno v:
SIAM Journal on Applied Dynamical Systems. 20:853-907
We propose a method to integrate dissipative PDEs rigorously forward in time with the use of the finite element method (FEM). The technique is based on the Galerkin projection on the FEM space and ...
Autor:
Piotr Kalita, Grzegorz Łukaszewicz
Publikováno v:
Nonlinearity. 33:5686-5732
We consider the Rayleigh–Benard problem for the three-dimensional Boussinesq system for the micropolar fluid. We introduce the notion of the multivalued eventual semiflow and prove the existence of the two-space global attractor corresponding to we
Publikováno v:
Physica D: Nonlinear Phenomena. 392:57-80
We consider the Rayleigh–Benard problem for the two-dimensional Boussinesq system for the micropolar fluid. Our main goal is to compare the value of the critical Rayleigh number, and estimates of the Nusselt number and the fractal dimension of the
Autor:
Piotr Kalita, Jakub Banaśkiewicz
We study the non-autonomous weakly damped wave equation with subquintic growth condition on the nonlinearity. Our main focus is the class of Shatah–Struwe solutions, which satisfy the Strichartz estimates and coincide with the class of solutions ob
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fd12759a03e2f435e9377fc5ad0d970d
http://arxiv.org/abs/2101.06523
http://arxiv.org/abs/2101.06523
We study the elliptic inclusion given in the following divergence form $$\begin{aligned}&-\mathrm {div}\,A(x,\nabla u) \ni f\quad \mathrm {in}\quad \Omega ,\\&u=0\quad \mathrm {on}\quad \partial \Omega . \end{aligned}$$ As we assume that $$f\in L^1(\
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0ac989ee67b41d4f5913005c48b6e2ce
https://ruj.uj.edu.pl/xmlui/handle/item/267946
https://ruj.uj.edu.pl/xmlui/handle/item/267946
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9783030460785
In this paper we present some mutual relations between semigroup theory in the context of the theory of infinite dimensional dynamical systems and the mathematical theory of hydrodynamics. These mutual relations prove to be very fruitful, enrich both
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::274f9b221c84594c0c01985871366136
https://doi.org/10.1007/978-3-030-46079-2_13
https://doi.org/10.1007/978-3-030-46079-2_13
Autor:
Leszek Gasiński, Piotr Kalita
Publikováno v:
Evolution Equations & Control Theory
We formulate a dynamic problem which governs the displacement of a viscoelastic body which, on one hand, can come into frictional contact with a penetrable foundation, and, on the other hand, may undergo material damage. We formulate and prove the th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1d54eb3c26e9da7715391c2a4ee065b0
https://ruj.uj.edu.pl/xmlui/handle/item/251583
https://ruj.uj.edu.pl/xmlui/handle/item/251583
Autor:
Piotr Kalita, Piotr Zgliczyński
We study the non-autonomously forced Burgers equation $$u_t(x,t) + u(x,t)u_x(x,t)-u_{xx}(x,t) = f(x,t)$$ on the space interval (0, 1) with two sets of the boundary conditions: the Dirichlet and periodic ones. For both situations we prove that there e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c0fc9b391b982794dd8ce76c01ec81e5
https://ruj.uj.edu.pl/xmlui/handle/item/243030
https://ruj.uj.edu.pl/xmlui/handle/item/243030
Publikováno v:
Journal of Differential Equations. 264:1886-1945
In this work we prove the lower and upper semicontinuity of pullback, uniform, and cocycle attractors for the non-autonomous dynamical system given by hyperbolic equation on a bounded domain Ω ⊂ R 3 ϵ u t t + u t − Δ u = f ϵ ( t , u ) . For e