Zobrazeno 1 - 10
of 98
pro vyhledávání: '"Piotr Biler"'
Publikováno v:
Journal of Differential Equations. 344:891-914
Publikováno v:
Journal of Dynamics and Differential Equations
Journal of Dynamics and Differential Equations, 2022, 34, pp.3131--3141. ⟨10.1007/s10884-021-09998-w⟩
Journal of Dynamics and Differential Equations, 2022, 34, pp.3131--3141. ⟨10.1007/s10884-021-09998-w⟩
We consider the drift-diffusion equation $$\begin{aligned} u_t-\varepsilon \varDelta u+\nabla \cdot (u\ \nabla K*u)=0 \end{aligned}$$ in the whole space with global-in-time solutions bounded in all Sobolev spaces; for simplicity, we restrict ourselve
Publikováno v:
Journal of Differential Equations. 267:6352-6369
We consider the simplest parabolic-elliptic model of chemotaxis in the whole space in several dimensions. Criteria for the existence of radially symmetric global-in-time solutions in terms of suitable Morrey norms are derived.
Autor:
Piotr Biler
Publikováno v:
Monatshefte für Mathematik. 189:611-624
Blowup analysis for solutions of a general evolution equation with nonlocal diffusion and localized source is performed. By comparison with recent results on global-in-time solutions, a dichotomy result is obtained.
Comment: 12
Comment: 12
Autor:
Piotr Biler, Tadeusz Nadzieja
Publikováno v:
Problems and Examples in Differential Equations ISBN: 9781003066835
Problems and Examples in Differential Equations
Problems and Examples in Differential Equations
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::338a6ecca7e7fb53f8b7eca43e5930a2
https://doi.org/10.1201/9781003066835-2
https://doi.org/10.1201/9781003066835-2
Publikováno v:
Journal of Differential Equations
Journal of Differential Equations, Elsevier, 2021, 271, pp.1092--1108
Journal of Differential Equations, 2021, 271, pp.1092--1108. ⟨10.1016/j.jde.2020.09.035⟩
Journal of Differential Equations, Elsevier, 2021, 271, pp.1092--1108
Journal of Differential Equations, 2021, 271, pp.1092--1108. ⟨10.1016/j.jde.2020.09.035⟩
We consider the drift-diffusion equation u t − e Δ u + ∇ ⋅ ( u ∇ K ⁎ u ) = 0 in the whole space with global-in-time bounded solutions. Mass concentration phenomena for radially symmetric solutions of this equation with small diffusivity ar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::da22cdf987f457078eebcb6bf3b3e008
Autor:
Piotr Biler
Publikováno v:
Annales Mathematicae Silesianae, Vol 32, Iss 1, Pp 43-63 (2018)
We consider the simplest parabolic-elliptic model of chemotaxis in the whole space and in several space dimensions. Criteria either for the existence of radial global-in-time solutions or their blowup in terms of suitable Morrey spaces norms are disc
Publikováno v:
Advances in Mathematics. 330:834-875
We consider the parabolic–elliptic model for the chemotaxis with fractional (anomalous) diffusion. Global-in-time solutions are constructed under (nearly) optimal assumptions on the size of radial initial data. Moreover, criteria for blowup of radi