Zobrazeno 1 - 10
of 58
pro vyhledávání: '"Ping Wong Ng"'
Autor:
Ping Wong Ng
Publikováno v:
Journal of Noncommutative Geometry. 16:1363-1395
Autor:
Huaxin Lin, Ping Wong Ng
Publikováno v:
International Mathematics Research Notices.
We classify all essential extensions of the form $$ \begin{align*} &0 \rightarrow {\mathcal{W}} \rightarrow {D} \rightarrow A \rightarrow 0,\end{align*}$$where ${\mathcal {W}}$ is the unique separable simple C*-algebra with a unique tracial state, wh
Autor:
Ping Wong Ng
Publikováno v:
Rocky Mountain Journal of Mathematics. 52
Autor:
Ping Wong Ng1 png@louisiana.edu, Robert, Leonel1 lxr7423@louisiana.edu
Publikováno v:
Münster Journal of Mathematics. 2016, Vol. 9 Issue 1, p121-154. 34p.
Autor:
Ping Wong Ng, Paul Skoufranis
Publikováno v:
Canadian Journal of Mathematics. 69:1109-1142
In this paper, we characterize the closures of convex hulls of unitary orbits of self-adjoint operators in unital, separable, simple C* -algebras with non-trivial tracial simplex, real rank zero, stable rank one, and strict comparison of projections
Autor:
Huaxin Lin, Ping Wong Ng
Publikováno v:
Journal of Functional Analysis. 270:1220-1267
Let Z be the Jiang–Su algebra and K the C ⁎ -algebra of compact operators on an infinite dimensional separable Hilbert space. We prove that the corona algebra M ( Z ⊗ K ) / Z ⊗ K has real rank zero. We actually prove a more general result.
Autor:
Thierry Giordano, Ping Wong Ng
In 1976, D. Voiculescu proved that every separable unital sub-C*-algebra of the Calkin algebra is equal to its (relative) bicommutant. In his minicourse (see reference), G. Pedersen asked in 1988 if Voiculescu's theorem can be extended to a simple co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e5dbdc778cd2cda1c9e84aabeb61f49e
Autor:
Ping Wong Ng
Publikováno v:
Operators and Matrices. :57-82
Autor:
Ping Wong Ng
Publikováno v:
Journal of Operator Theory. 71:341-379
Let A be a unital separable simple C*-algebra such that either (1) A has real rank zero, strict comparison and cancellation or (2) A is TAI. We study the kernel of the de la Harpe--Skandalis determinant on GL^0(A), proving that the determinant vanish
Publikováno v:
Transactions of the American Mathematical Society; Aug2018, Vol. 370 Issue 8, p5725-5759, 35p