Zobrazeno 1 - 10
of 6 907
pro vyhledávání: '"Ping WEI"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Frontiers in Nutrition, Vol 9 (2023)
IntroductionParkinson’s disease is a neurodegenerative disorder involving loss of dopaminergic neurons. Multiple studies implicate the microbiota-gut-brain axis in Parkinson’s disease pathophysiology. Ping-wei-san plus Herbal Decoction, a traditi
Externí odkaz:
https://doaj.org/article/89d86628acac49219237552dc5789a8c
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
State-of-the-art retrieval models typically address a straightforward search scenario, where retrieval tasks are fixed (e.g., finding a passage to answer a specific question) and only a single modality is supported for both queries and retrieved resu
Externí odkaz:
http://arxiv.org/abs/2411.02571
Autor:
Dai, Wenliang, Lee, Nayeon, Wang, Boxin, Yang, Zhuolin, Liu, Zihan, Barker, Jon, Rintamaki, Tuomas, Shoeybi, Mohammad, Catanzaro, Bryan, Ping, Wei
We introduce NVLM 1.0, a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks, rivaling the leading proprietary models (e.g., GPT-4o) and open-access models (e.g., Llama 3-V 4
Externí odkaz:
http://arxiv.org/abs/2409.11402
Autor:
Xu, Peng, Ping, Wei, Wu, Xianchao, Xu, Chejian, Liu, Zihan, Shoeybi, Mohammad, Catanzaro, Bryan
In this work, we introduce ChatQA 2, an Llama 3.0-based model with a 128K context window, designed to bridge the gap between open-source LLMs and leading proprietary models (e.g., GPT-4-Turbo) in long-context understanding and retrieval-augmented gen
Externí odkaz:
http://arxiv.org/abs/2407.14482
Autor:
Yu, Yue, Ping, Wei, Liu, Zihan, Wang, Boxin, You, Jiaxuan, Zhang, Chao, Shoeybi, Mohammad, Catanzaro, Bryan
Large language models (LLMs) typically utilize the top-k contexts from a retriever in retrieval-augmented generation (RAG). In this work, we propose a novel instruction fine-tuning framework RankRAG, which instruction-tunes a single LLM for the dual
Externí odkaz:
http://arxiv.org/abs/2407.02485
Autor:
Nvidia, Adler, Bo, Agarwal, Niket, Aithal, Ashwath, Anh, Dong H., Bhattacharya, Pallab, Brundyn, Annika, Casper, Jared, Catanzaro, Bryan, Clay, Sharon, Cohen, Jonathan, Das, Sirshak, Dattagupta, Ayush, Delalleau, Olivier, Derczynski, Leon, Dong, Yi, Egert, Daniel, Evans, Ellie, Ficek, Aleksander, Fridman, Denys, Ghosh, Shaona, Ginsburg, Boris, Gitman, Igor, Grzegorzek, Tomasz, Hero, Robert, Huang, Jining, Jawa, Vibhu, Jennings, Joseph, Jhunjhunwala, Aastha, Kamalu, John, Khan, Sadaf, Kuchaiev, Oleksii, LeGresley, Patrick, Li, Hui, Liu, Jiwei, Liu, Zihan, Long, Eileen, Mahabaleshwarkar, Ameya Sunil, Majumdar, Somshubra, Maki, James, Martinez, Miguel, de Melo, Maer Rodrigues, Moshkov, Ivan, Narayanan, Deepak, Narenthiran, Sean, Navarro, Jesus, Nguyen, Phong, Nitski, Osvald, Noroozi, Vahid, Nutheti, Guruprasad, Parisien, Christopher, Parmar, Jupinder, Patwary, Mostofa, Pawelec, Krzysztof, Ping, Wei, Prabhumoye, Shrimai, Roy, Rajarshi, Saar, Trisha, Sabavat, Vasanth Rao Naik, Satheesh, Sanjeev, Scowcroft, Jane Polak, Sewall, Jason, Shamis, Pavel, Shen, Gerald, Shoeybi, Mohammad, Sizer, Dave, Smelyanskiy, Misha, Soares, Felipe, Sreedhar, Makesh Narsimhan, Su, Dan, Subramanian, Sandeep, Sun, Shengyang, Toshniwal, Shubham, Wang, Hao, Wang, Zhilin, You, Jiaxuan, Zeng, Jiaqi, Zhang, Jimmy, Zhang, Jing, Zhang, Vivienne, Zhang, Yian, Zhu, Chen
We release the Nemotron-4 340B model family, including Nemotron-4-340B-Base, Nemotron-4-340B-Instruct, and Nemotron-4-340B-Reward. Our models are open access under the NVIDIA Open Model License Agreement, a permissive model license that allows distri
Externí odkaz:
http://arxiv.org/abs/2406.11704
Autor:
Ye, Hanrong, Huang, De-An, Lu, Yao, Yu, Zhiding, Ping, Wei, Tao, Andrew, Kautz, Jan, Han, Song, Xu, Dan, Molchanov, Pavlo, Yin, Hongxu
We introduce X-VILA, an omni-modality model designed to extend the capabilities of large language models (LLMs) by incorporating image, video, and audio modalities. By aligning modality-specific encoders with LLM inputs and diffusion decoders with LL
Externí odkaz:
http://arxiv.org/abs/2405.19335