Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Pietro Speziali"'
Publikováno v:
Journal of Combinatorial Theory, Series A. 165:408-439
We present a new method for the study of hemisystems of the Hermitian surface U 3 of PG ( 3 , q 2 ) . The basic idea is to represent generator-sets of U 3 by means of a maximal curve naturally embedded in U 3 so that a sufficient condition for the ex
Autor:
Maria Montanucci, Pietro Speziali
Publikováno v:
Journal of Algebra. 526:30-50
Let X be a (projective, non-singular, irreducible) curve of even genus g ( X ) ≥ 2 defined over an algebraically closed field K of characteristic p. If the p-rank γ ( X ) equals g ( X ) , then X is ordinary. In this paper, we deal with large autom
Autor:
Nazar Arakelian, Pietro Speziali
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Let $${\mathcal {X}}$$ be a (projective, algebraic, non-singular, absolutely irreducible) curve of genus g defined over an algebraically closed field K of characteristic $$p \ge 0$$ , and let q be a prime dividing the cardinality of $$\text{ Aut }({\
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::335bfa5a561b6bdd0cf786845d92bba9
Publikováno v:
Journal of Pure and Applied Algebra. 222:1810-1826
Let K be the algebraic closure of a finite field F q of odd characteristic p . For a positive integer m prime to p , let F = K ( x , y ) be the transcendence degree 1 function field defined by y q + y = x m + x − m . Let t = x m ( q − 1 ) and H =
Publikováno v:
Journal of Geometry. 108:985-1011
Complete (k, 4)-arcs in projective Galois planes are the geometric counterpart of linear non-extendible codes of length k, dimension 3 and Singleton defect 2. A class of infinite families of complete (k, 4)-arcs in $$\mathrm{PG}(2,q)$$ is constructed
Autor:
Gábor Korchmáros, Pietro Speziali
Publikováno v:
Finite Fields and Their Applications. 44:1-17
Hermitian functional and differential codes defined over divisors with strong combinatorial and algebraic properties have often good performance. Here, those arising from the 2-transitive orbit of PGL ( 2 , q ) on the Hermitian curve are investigated
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
For any smooth Hurwitz curve H n : X Y n + Y Z n + X n Z = 0 over the finite field F p , an explicit description of its Weierstrass points for the morphism of lines is presented. As a consequence, bounds on the number of rational points of H n are ob
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3f4fe054f759bacca7cf204ac8855d67
Autor:
Pietro Speziali, Nazar Arakelian
Let $\mathcal{X}$ be an irreducible algebraic curve defined over a finite field $\mathbb{F}_q$ of characteristic $p>2$. Assume that the $\mathbb{F}_q$-automorphism group of $\mathcal{X}$ admits as an automorphism group the direct product of two cycli
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5e723eeb7b83bf574fd98c7430618a60
http://arxiv.org/abs/1608.04338
http://arxiv.org/abs/1608.04338
Autor:
Pietro Speziali, Maria Montanucci
For an algebraic curve $\mathcal{X}$ defined over an algebraically closed field of characteristic $p >0$, the $a$-number $a(\mathcal{X})$ is the dimension of the space of exact holomorphic differentials on $\mathcal{X}$. We compute the $a$-number for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9aac218752b5425fece11b942209675d
http://arxiv.org/abs/1603.03604
http://arxiv.org/abs/1603.03604