Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Pietro Celada"'
Autor:
Pietro Celada, Jihoon Ok
Publikováno v:
Nonlinear Analysis. 194:111473
We study partial C 1 , α – regularity of minimizers of quasi-convex variational integrals with non-standard growth. We assume in particular that the relevant integrands satisfy an Orlicz’s type growth condition, i.e. a so-called general growth c
Autor:
Stefania Perrotta, Pietro Celada
Publikováno v:
SIAM Journal on Control and Optimization. 41:1118-1140
We consider the problem of minimizing autonomous, simple integrals such as \min\,\left\{ \int_0^T f\left(x(t)\,,x^\prime(t)\right)\,dt\colon\,\, \text{$x\in AC{([0\,,T])}$, $x(0)=x_0$, $x(T)=x_T$} \right\}, \tag{$\cal{P}$} where $f:{\mathbb R}\times{
Autor:
Stefania Perrotta, Pietro Celada
Publikováno v:
Scopus-Elsevier
We consider the problem of minimizing multiple integrals of product type, i.e. \[ \min \left\{ \int_\Omega g(u(x))f(\nabla u(x)) dx\colon u\in u_0+W^{1,p}_0 \Omega \right\} \leqno{(\Pcal)} \] where $\Omega$ is a bounded, open set in ${\mathbb R}^N$ ,
Autor:
Pietro Celada, Stefania Perrotta
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 41:383-404
Autor:
Pietro Celada
Publikováno v:
Journal of Mathematical Analysis and Applications. 230(1):30-56
We consider variational problems of the form min ∫ Ω [f(Δu(x)) + g(x, u(x))]dx: u ∈ u 0 + H 1 0 (Ω) , wheref: R N → [0, ∞] is a possibly nonconvex function with quadratic growth at infinity andg(x, u) is Lipschitz continuous and strictly i
Autor:
Stefania Perrotta, Pietro Celada
Publikováno v:
NoDEA : Nonlinear Differential Equations and Applications. 5:383-396
We prove the existence of infinitely many vector-valued Lipschitz-continuous functions u on an open set \( \omega \) satisfying suitable Dirichlet boundary conditions such that the singular values of the gradient matrix \( \nabla \)u, i.e. the square
Publikováno v:
Scopus-Elsevier
P. Celada1, S. Perrotta2, G. Treu3 1 Dipartimento di Scienze Matematiche, Universita degli Studi di Trieste, P. le Europa 1, I-34127 Trieste, Italia (e-mail: celada@univ.trieste.it) 2 Dipartimento di Matematica Pura ed Applicata “G. Vitali”, Univ
Autor:
Alessandra Lunardi, Pietro Celada
In a Banach space X endowed with a nondegenerate Gaussian measure, we consider Sobolev spaces of real functions defined in a sublevel set O = { x ∈ X : G ( x ) 0 } of a Sobolev nondegenerate function G : X ↦ R . We define the traces at G − 1 (
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3a07a6b1257b3b51903fd8f8495e3c17
http://arxiv.org/abs/1302.2204
http://arxiv.org/abs/1302.2204
Autor:
Stefania Perrotta, Pietro Celada
We study the existence of singular minimizers in the class of radial deformations for polyconvex energies that grow linearly with respect to the Jacobian.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7eccf2f0646c5ea2e4f97bb29f3c04b2
https://hdl.handle.net/11380/762089
https://hdl.handle.net/11380/762089
We show that local minimizers of functionals of the form ∫ Ω [f(Du(Χ}} + g(Χ, u(Χ))] dΧ, u e u 0 + W 1,p 0 (Ω), ∫ Ω [∫(Du(Χ))+g(Χ, u(Χ))] dΧ, ueu o +W 1,p 0 (ΩQ), are locally Lipschitz continuous provided f is a convex function with
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e7e1db1d66484c878af747a3ece9d933
http://hdl.handle.net/11585/64837
http://hdl.handle.net/11585/64837