Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Pierrick Bousseau"'
Publikováno v:
Forum of Mathematics, Pi, Vol 9 (2021)
We prove a higher genus version of the genus $0$ local-relative correspondence of van Garrel-Graber-Ruddat: for $(X,D)$ a pair with X a smooth projective variety and D a nef smooth divisor, maximal contact Gromov-Witten theory of $(X,D)$ with $\lambd
Externí odkaz:
https://doaj.org/article/92d06f43f7f64259a52fe988722907a5
Publikováno v:
Journal of Topology. 16:264-343
Autor:
Hülya Argüz, Pierrick Bousseau
Publikováno v:
Compositio Mathematica. 158:2206-2249
We prove the flow tree formula conjectured by Alexandrov and Pioline, which computes Donaldson–Thomas invariants of quivers with potentials in terms of a smaller set of attractor invariants. This result is obtained as a particular case of a more ge
Autor:
Pierrick Bousseau
Publikováno v:
Journal of Algebraic Geometry. 31:593-686
We show that a purely algebraic structure, a two-dimensional scattering diagram, describes a large part of the wall-crossing behavior of moduli spaces of Bridgeland semistable objects in the derived category of coherent sheaves on P 2 \mathbb {P}^2 .
Autor:
Pierrick Bousseau
Publikováno v:
International Mathematics Research Notices. 2021:11845-11888
We explain and generalize a recent example of quiver Donaldson–Thomas/relative Gromov–Witten correspondence due to Reineke–Weist by showing how to reduce it to the Gromov–Witten/Kronecker correspondence by a degeneration and blow-up. We also
Autor:
Pierrick Bousseau
We review the recent proof of the N.Takahashi's conjecture on genus $0$ Gromov-Witten invariants of $(\mathbb{P}^2, E)$, where $E$ is a smooth cubic curve in the complex projective plane $\mathbb{P}^2$. The main idea is the use of the algebraic notio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::248dff2f00ef4b7b92f42605b1fb0c8f
https://hal.archives-ouvertes.fr/hal-03277600/document
https://hal.archives-ouvertes.fr/hal-03277600/document
Publikováno v:
Forum of Mathematics, Pi
We prove a higher genus version of the genus $0$ local-relative correspondence of van Garrel-Graber-Ruddat: for $(X,D)$ a pair with X a smooth projective variety and D a nef smooth divisor, maximal contact Gromov-Witten theory of $(X,D)$ with $\lambd
Publikováno v:
Lett.Math.Phys.
Lett.Math.Phys., 2021, 111, pp.109. ⟨10.1007/s11005-021-01451-9⟩
Lett.Math.Phys., 2021, 111, pp.109. ⟨10.1007/s11005-021-01451-9⟩
In arXiv:2011.08830 we established a series of correspondences relating five enumerative theories of log Calabi-Yau surfaces, i.e. pairs $(Y,D)$ with $Y$ a smooth projective complex surface and $D=D_1+\dots +D_l$ an anticanonical divisor on $Y$ with
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6a634eb5696d6d919cd88f52119a1684
https://hal.archives-ouvertes.fr/hal-03115807
https://hal.archives-ouvertes.fr/hal-03115807
Autor:
Pierrick Bousseau
Publikováno v:
Selecta Mathematica (New Series)
Selecta Mathematica (New Series), Springer Verlag, 2021, 27 (3), pp.43. ⟨10.1007/s00029-021-00667-w⟩
Selecta Mathematica. N.S., 27 (3)
Selecta Mathematica (New Series), Springer Verlag, 2021, 27 (3), pp.43. ⟨10.1007/s00029-021-00667-w⟩
Selecta Mathematica. N.S., 27 (3)
We show that, after the change of variables q=eiu, refined floor diagrams for P2 and Hirzebruch surfaces compute generating series of higher genus relative Gromov–Witten invariants with insertion of a lambda class. The proof uses an inductive appli
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0208f56f93a7d9bcdff090afbef7c75b
https://hal.archives-ouvertes.fr/hal-03251062
https://hal.archives-ouvertes.fr/hal-03251062
Autor:
Pierrick Bousseau
Publikováno v:
Geom. Topol. 24, no. 3 (2020), 1297-1379
Geometry and Topology
Geometry and Topology, Mathematical Sciences Publishers, 2020, 24(3), pp.1297-1379. ⟨10.2140/gt.2020.24.1297⟩
Geometry and Topology
Geometry and Topology, Mathematical Sciences Publishers, 2020, 24(3), pp.1297-1379. ⟨10.2140/gt.2020.24.1297⟩
Gross-Pandharipande-Siebert have shown that the 2-dimensional Kontsevich-Soibelman scattering diagrams compute certain genus zero log Gromov-Witten invariants of log Calabi-Yau surfaces. We show that the $q$-refined 2-dimensional Kontsevich-Soibelman
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4f727f4862bcbec580a130623b4ec4db
https://projecteuclid.org/euclid.gt/1601949622
https://projecteuclid.org/euclid.gt/1601949622